Probing Gas Flows around Galaxies with SINFONI and X-Shooter

Celine Peroux, Nicolas Bouche, Varsha Kulkarni, Don York & Giovanni Vladilo

PLAN

- Detecting absorbing-galaxies
- Kinematics
- Metallicity
- Gas Flows

PLAN

- Detecting absorbing-galaxies
- Kinematics
- Metallicity
- Gas Flows

Observation in Absorption

Quasar
 Absorbers

(Pontzen et al. 2008)

Quasar Absorbers

- Selected on the basis of the cross-section of the neutral hydrogen gas
- Selected regardless of luminosity, morphology, etc.
- Observed at all redshifts
- Physical properties (like HI, metallicity, etc.) are well constrained
- Connect gas and stars in galaxies

Neutral HI \rightarrow Molecular H₂ \rightarrow star formation

Cosmological Evolution of Neutral Gas Mass

(Zafar et al., 2013b)

Connecting Gas & Star Formation

The IFU Approach

- quasar emission line is de-coupled from absorber-galaxy emission line => probe small impact parameters
- secured identification thanks to the absorber-galaxy spectrum
 can study the properties of the galaxy

Galactic nucleus seen in combined infrared light

Image slice at a single

infrared wavelength

Spectral slice showing the spectra across the entire galactic nucleus

The Sample

- => aim at detecting redshifted H-alpha
- select 22 intervening absorbers
- known N(HI) (DLAs + sub-DLAs)
- known metallicity from high-resolution observations
- $0.7 < z_{abs} < 2.6$; 10 @ $z \sim 1 + 12$ @ $z \sim 2$
- free from OH line contamination

The Observations

VLT/SINFONI

- mosaic around the quasar for sky subtraction and larger radius search
- 0.10-0.25" pixel, seeing= 0.4-1.1"
- use quasar for NGS/AO

VLT/X-Shooter

- slit aligned to include both quasar and absorbing-galaxy
- R=30-60 km/s depending on arm

Wednesday, March 28, 12

H-alpha Detections

• Looking in emission for absorbing gas with SINFONI

Q1009 Ha(z=0.887)

(Peroux et al. 2011a, 2012)

z~2

Typical Physical Properties

- F(H-a)=few 10⁻¹⁷ erg/s/cm²
- L(H-a)=few 10⁴¹ erg/s
- SFR ~ few M_{sun}/yr at z~1
 ~20 M_{sun}/yr at z~2
- [O/H] metallicity from N2 indicator ~ solar
- [Zn/H]>-1.0 = 1/10 solar
- b = 10-40 kpc

Star Formation Rates

=> detections among most metal-rich systems

Star Formation Rates per Unit Area

Absorber's Redshift

PLAN

- Detecting absorbing-galaxies
- Kinematics
- Metallicity
- Gas Flows

Kinematics

• inclination: sin i, velocity and dispersion: v/sigma

(Peroux et al. 2011b)

Kinematics

Mass Estimates

Mass Estimates

- $M_{dyn} \sim 10^{10-11} M_{sun}$
- $M_{gas} \sim 10^{9-10} M_{sun}$
- $M_{star} \sim 10^{9-10} M_{sun} =>$ follows mass-metallicity relation
- M_{halo}~10¹²⁻¹³ M_{sun} => 1 order of mag > predicted by Pontzen et al. 2008

PLAN

- Detecting absorbing-galaxies
- Kinematics
- Metallicity
- Gas Flows

2D SINFONI Metallicity Maps

- N2 parameter [Pettini & Page 2004]
- collapsed [NII]/H-alpha ratio map
- metallicity rather uniform gradients: -0.11+/-0.17 (Q0452), <0.10 (Q1009) and -0.07+/-0.35 (Q2352) dex/kpc

=> no indication of accretion

[Queyrel, et al. 2012, Troncoso et al. 2013]

Metallicity Maps

Q1009 12+log(0/H)

X-Shooter Absorbing-Galaxy Spectra

HI vs HII Metallicities

Table 4. Metallicity with respect to solar measured in absorption at given impact parameter and in emission.

Quasar	phys dist [kpc]	Absorption Abundanc [X/H]	e Ion X	Emission Metallicity ^a 12+log(O/H)	Gradients [dex/kpc]	Reference
HS1543+5921	0.4	$-0.41{\pm}0.06$	S	$-0.54{\pm}0.20$	$+0.32{\pm}0.21$	Bowen et al. 2005
Q1009-0026	39	$+0.25\pm0.06$	\mathbf{Zn}	$+0.04\pm0.80$	$+0.01\pm0.80$	This work
AO0235+164	7	$-1.80{\pm}0.40$	Fe	$-0.24{\pm}0.15$	-0.22 ± 0.43	Chen et al. 2005
Q0302-223	25	$-0.51{\pm}0.12$	Zn	< -0.06	> -0.02	This work
PKS0439-433	7	$-0.72{\pm}0.12$	Fe	$+0.45\pm0.15$	-0.17 ± 0.19	Chen et al. 2005
Q0827 + 243	36	$-1.01{\pm}0.11$	Fe	> +0.06	< -0.03	Chen et al. 2005
Q0452-1640	16	$-0.96 {\pm} 0.08$	\mathbf{Zn}	-0.26 ± 0.01	$-0.04{\pm}0.08$	This work
Q2222-0946	6	$-0.46 {\pm} 0.07$	Zn	< -0.46	> -0.00	This work
Q2352-0028	12	< -0.51	Zn	$-0.26 {\pm} 0.03$	< -0.02	This work

^a: The emission metallicities are derived from R_{23} (Pagel et al. 1979) except for objects studied in this work where we used N2 (Pettini & Pagel 2004)

HI metallicity in absorption

HI vs HII Metallicities HII metallicity in emission this survey more than double number of systems for which such measures are possible respect to solar 0 gradients: -0.22 to +0.32 dex/ kpc Metallicity with difference neutral/ionised gas Ţ [James et al. 2013] \sim (updated figure with latest *measurements*) 20 40 0 HI metallicity in absorption Impact Parameter [kpc]

PLAN

- Detecting absorbing-galaxies
- Kinematics
- Metallicity
- Gas Flows

- interaction and merging
- star formation rate per unit area
- EW(MgII)
- comparison of emission/absorption kinematics
- inclination/orientation to quasar line-of-sight
- internal metallicity gradient

• interaction and merging:

2 out of 5 => tidal streams/merging?

• star formation rate per unit area:

 Σ_{SFR} >0.1 M_{sun}/yr/kpc² => outflows? [Heckman et al. 2003]

• EW(MgII):

>0.1Ang in all cases => winds?

comparison of emission/absorption kinematics:

compare V_{max} and Δ_v => in 2 cases gas could be co-rotating with the halo

Inclination/Orientation

• internal metallicity gradient:

uniform in all 3 cases => no indication of accretion

Putting it altogether

Quasar	Galaxy Orientation	b [kpc]	Direction to quasar line-of-sight aligned with	V_{max} [km/s]	$\frac{\Delta v}{[\text{km/s}]}$	Absorption Profile	Conclusion
Q0302-223	edge-on	25	minor axis	11	120	doubled-peaked	\Rightarrow co-rotating/outflow?
Q0452-1640	face-on?	16	major axis	100	230	either-side of z _{gal}	⇒merger/outflow?
Q1009-0026	edge-on	39	minor axis?	250	334	asymmetrical	⇒outflow
Q2222-0946	edge-on	6	n/a^{\dagger}	20	200	centred and complex	⇒outflow
Q2352-0028	edge-on	12	major axis	140	220	centred and complex	$\Rightarrow \text{co-rotating/outflow?}$

: in the case of Q2222-0946, the major axis is undefined because of the compact nature of the galaxy.

• => in 2 cases, we have strong indications of outflows

Conclusions

- Detect with SINFONI:
 - detect 5/22 (mostly z~1)
 - allows to probe low impact parameters
 - provides a way to securely confirm the galaxy redshift right away
- SFR of quasar absorbers ~ few M_{sun}/yr , b<40kpc in a couple of hours
- Emission dynamical properties: $M_{gas=}10^9-10^{10}M_{sun}$, $M_{halo}=10^{12}-10^{13}M_{sun}$
- Metallicity with SINFONI + X-Shooter:
 - HII metallicity map: internal gradients are rather flat
 - metallicity in absorption and in emission are comparable
- 3 systems consistent with outflows while 2 indicate strong evidences for outflows