

Australian National University

3D 2014, ESO Garching, 10 March 2014

Motivation

□ In broad terms, the Fundamental Plane (FP) provides...

- ① clues for understanding the formation and subsequent evolution of early-type galaxies (ETGs); and
- ② distance estimates, and so peculiar velocities, an independent probe of structure at low redshifts leading to improved cosmological constraints with fewer degeneracies.
- □ 3D spectroscopy can explore how the FP can be brought closer to the virial plane, and how the FP scatter can be reduced, by...
 - ① using optimized ways of measuring FP parameters;
 - including additional parameters characterizing the galaxies' stellar populations or kinematic morphologies; and
 - ③ applying appropriate selection criteria for galaxy samples.

Fundamental Plane surveys

- 6dF Galaxy Survey: properties of the Fundamental Plane from ~9000 early-type galaxies
- SAMI survey: preliminary results on the Fundamental Plane from 3D spectroscopy with the first ~100 early-type galaxies from the SAMI pilot survey
- Taipan survey: planned survey of ~500,00 redshifts and ~50,000 Fundamental Plane distances and peculiar velocities, starting 2016

6dF Galaxy Survey

- The 6dFGS is a combined redshift and peculiar velocity survey designed to map the large-scale density and velocity fields in nearby universe
- □ Sample: NIR-selected galaxies from the 2MASS survey with K<12.65 (similar limits in b, r, J, H)
- □ Area: 17000 deg² of southern hemisphere excl. $\pm 10^{\circ}$ about the Galactic plane ($\delta < 0^{\circ}$, $|b| > 10^{\circ}$)

Magnitude limits	$K \leqslant 12.65$
	$H \leqslant 12.95$
	$J\leqslant 13.75$
	$r_{ m F}\leqslant 15.60$
	$b_{ m J}\leqslant 16.75$
Sky coverage (sr)	5.2
Fraction of sky	41%
Extragalactic sample, N	125071
Median redshift, $z_{\frac{1}{2}}$	0.053
Volume V in $[0.5z_{\frac{1}{2}}^2]$,	
$1.5z_{\frac{1}{2}}$] $(h^{-3}{ m Mpc}^3)$	$2.1 imes 10^7$
Sampling density at $z_{\frac{1}{2}}$,	
$ar{ ho} = rac{2N}{3V}$ $(h^3 \mathrm{Mpc}^{-3})$	4×10^{-3}
Fibre aperture $('')$	6.7
Fibre aperture at $z_{\frac{1}{2}}$	
$(h^{-1}\mathrm{kpc})$	4.8

6dF Galaxy Survey

□ Observations used the 6-degree Field (6dF) multi-object fibre spectrograph on the UK Schmidt Telescope over the period 2001-2006

6dFGS Fundamental Plane

□ The Fundamental Plane is the empirically observed relation...

 $\log(R_e) = a \log(\sigma) + b \log(I_e) + c$

where R_e is the half-light radius in kpc, σ is the stellar velocity dispersion in km/s and I_e is the surface brightness in L_{\odot}/pc^2

- □ For convenience, we write the Fundamental Plane as $r = a \ s + b \ i + c$ where $r = \log(R_e)$, $s = \log(\sigma)$ and $i = \log(I_e)$
- □ The Fundamental Plane (FP) subsample of the 6dFGS uses...
 - \circ J, H, K photometric parameters (R_e, I_e) from 2MASS;
 - \circ redshifts and central velocity dispersions (σ_0) from 6dFGS;
 - \circ all early-type galaxies in 6dFGS with z<0.055, $\sigma_0\!\!>\!\!112$ km/s;
 - $\circ\,$ and comprises a total of ~9000 galaxies

Modelling the 6dFGS FP

- □ We model the FP as a 3D Gaussian in (r,s,i) space; for *high-mass* ETGs, this is an excellent empirical match to observed distribution
- □ The model is defined by the coefficients of the FP (*a*, *b*, *c*), and by the centroid (*r*, *s*, *i*) and dispersion (σ_1 , σ_2 , σ_3) of the 3D Gaussian
- □ The axes of the 3D Gaussian (v_1, v_2, v_3) are defined as:
 - v_1 = through the plane $(r\uparrow, s\downarrow, i\uparrow)$
 - = short axis (normal to FP)
 - v_2 = along the plane ($r \downarrow$, no s, $i \uparrow$)
 - = long axis
 - $v_3 =$ across the plane $(r\uparrow, s\uparrow, i\uparrow)$
 - = intermediate axis

Fitting the 6dFGS FP

- We fit a 3D Gaussian model to the FP using a comprehensive and robust maximum likelihood method that accounts for:
 - errors in all the observed quantities for each galaxy & their correlations
 - sample selection effects & censoring (redshift range, lower limit on velocity dispersion, bright & faint magnitude limits, outlier rejection)

3D Visualization with S2PLOT by C.Fluke

Fitted FP parameters and trends

□ In the J band (largest sample, smallest errors), the best-fit FP is $r = (1.52 \pm 0.03) s + (-0.89 \pm 0.01) i + (-0.33 \pm 0.05)$ with intrinsic dispersions in the three axes of (0.05,0.32,0.17)

1800

1600

1400

1200

1000

800

600

400

200

- Best-fit 3D Gaussian is a good representation of observed (*r*,*s*,*i*) distⁿ
- Small FP offsets are found between cluster & field galaxies and E/S0's & spiral bulges
- The 'intrinsic' scatter about the FP is due largely to the effect of stellar population age variations on M/L; other trends may be driven by indirect correlations with age

FP scatter and distance errors

- □ The scatter about the FP in $r \equiv log(R_e)$ translates into the uncertainty in individual distances and peculiar velocities
- □ The *total scatter* in *r* is given by the quadrature sum of the observational errors and the intrinsic scatter in *r* about the FP
- □ The inferred *intrinsic scatter* of the FP in distance is ~23%

- □ Computing the distance errors from the posterior probability distributions, and including the effects of sampling biases, the rms distance error for galaxies in the 6dFGS sample is 26%
- Why 26% rather than canonical 20%? Factors are: low S/N of σ measurements, steep NIR FP slope, inclusive morphological sample(?), careful error analysis, allowance for sampling biases

The SAMI instrument

□ SAMI is a multi-IFU spectrograph at the AAT 3.9m prime focus

- 13 hexabundle IFUs deployed over a 1° diameter field
- Each IFU is ~15" in diameter, with 61 x 1.6" fibres

 SAMI feeds the double-beam AAOmega spectrograph

The SAMI survey

- SAMI galaxy survey aims to obtain
 3D spectra for 3000 galaxies of all types, with a broad range in mass, and covering all environments
 - $\circ~$ observations run from 2013 to 2016
 - currently have data for >600 galaxies

- □ The targets for the SAMI survey were chosen to...
 - sample the full range of galaxy environments
 - cover a broad range in stellar mass
 - have sizes such that emission spectra can be obtained out to $\sim 2R_e$
 - have surface brightness sufficient to measure stellar kinematics to $\sim R_e$
 - have a target density matched to SAMI IFU density
 - have the best ancillary data (opt/IR/UV/radio photometry, via GAMA)
- □ For more on the SAMI survey (sami.survey.org), see talks by Lisa Fogarty, Iraklis Konstantopoulos, Nic Scott & James Allen

SAMI pilot survey data for ETGs

□ SAMI pilot survey: a precursor to the SAMI galaxy survey

- $\circ~$ it comprises observations of 3 clusters: A85, A168 & A2399
- \circ 106 galaxies with M_r<-20.25 in 1° fields were observed
- we examine the 74 morphological ETGs with good pilot survey data

SAMI Fundamental Plane

- Preliminary Fundamental
 Plane for 74 early-type
 galaxies from 3 clusters
- SAMI selection effects and sample biases are not yet quantified, so current focus is on differential analyses
- □ First comparison: central versus effective velocity dispersions in the FP – i.e. $\sigma_0 = \sigma(R_e/8) vs \sigma_e = \sigma(R_e).$

SAMI Fundamental Plane

- □ Comparing FP(σ_0) and FP(σ_e), we find:
 - \circ the expected offset (because $\sigma_0 > \sigma_e$)
 - very similar slopes
 (equally affected by selection effects)
 - \circ marginally less scatter for FP($\sigma_{e})$ than FP($\sigma_{0})$
- Broadly consistent with previous findings (e.g. Falcón-Barroso et al. 2011)

FP residual correlation with λ_R

- □ Are residuals from the FP (in log *R*_e) correlated with kinematic morphology?
- □ In particular, are they correlated with specific angular momentum? $\lambda_R = \frac{\langle R|V| \rangle}{\langle R\sqrt{V^2 + \sigma^2} \rangle}$
- We find a mild negative correlation: the Spearman rank correlation statistic is
 -0.19 (significant at 90% confidence level)

Residual correlations: FR vs SR

- Do FP residual distributions differ for the two identified kinematic classes, the fast and slow rotators?
 - Slow rotators are classified using the criterion $\lambda_{\rm R} < k \epsilon^{\frac{1}{2}}$ (with *k*=0.31 at *R*_e)
- For the small pilot survey sample
 (60 FRs + 14 SRs) we find:
 - \circ a marginally significant (2.3 σ) FP zeropoint offset
 - less FP scatter for SRs than FRs (11% versus 16%)
- These results are consistent with those from a same-size SAURON sample of ETGs from lowerdensity environments (Falcón-Barroso et al. 2011)

The Taipan galaxy survey

- □ Taipan is a z+v-survey expanding 6dFGS by 4x in sample size & volume; with SDSS it will cover ~¾ of sky
- Now refurbishing UKST & building new fibre positioner
 + spectrograph; Taipan survey planned to start in 2016
- □ Survey will measure ~500,000 redshifts and ~50,000 FP distances/peculiar velocities for galaxies to r≈17 (K≈14); $\langle z \rangle \approx 0.08$ and $V_{eff} \approx 0.23$ h⁻³ Gpc³
- Lessons learned from SAMI will improve Taipan FP measurements (and distances) relative to 6dFGS
- □ Other Taipan improvements are:
 - more precise σ's from higher spectral resolution at higher S/N
 - better *R_e*'s from higher spatial resolution imaging at higher S/N
 - expect distance errors of 15-20%

