Towards the detection of optical reflected light from other worlds

Nuno C. Santos

(Centro de Astrofísica, Univ. do Porto)

With the collaboration of P. Figueira, J. H. Martins

- Represents a direct detection of an exoplanet
 - Complementary to IR observations (yesterday's talk by I. Snellen)
- Allows to probe planetary atmosphere
 - Geometric albedo
 - Atmosphere physics (e.g. winds e.g. Snellen et al. 2010)
- Allows to derive the velocity of the planet
 - Derive its real (dynamical) mass (e.g. Brogi et al. 2012)
- Complementary physics: planet rotation (e.g. Kawahara 2012)
- Important: can be applied even for non transiting planets

- Reflected light (even broad band) is not easy to detect
 - Recently possible using CoRoT and Kepler (e.g. Alonso et al. 2009; Borucki et al. 2009; Kipping et al. 2011)
- Jovian planet with P=3 days, Ag=0.3
 - Expected $Fp/F_* = 4.2 \times 10^{-5}$ (maximum value)
- Hot Jupiters: former results suggest low geometric albedos? (e.g. Collier Cameron et al. 2002, Rowe et al. 2008, Langford et al. 2010)
 - Though Ag values around 0.3 or higher have been found (e.g. Santerne et al. 2011; Cowan et al. 2011)

Using the power of the Cross-Correlation Function

 By construction, the Cross-Correlation Function (CCF) represents an average spectral line

Using the power of the Cross-Correlation Function

- All lines in the CCF mask/spectrum are "stacked"
- The S/N in each corresponding "resolution element" (pixel on the CCD) of the CCF is given, as a good approximation, by:

$$S/N_{CCF} = S/N_{spe} \times sqrt(N_{lines})$$

- Example:
 - Spectrum with $\langle S/N_{spe} \rangle = 1000$
 - Nlines ~ 3600 (HARPS G2 mask)
 - Expected S/N_{CCF} = 60000

I. Initial set of high S/N HARPS data

- Built from random stack of 20 spectra taken same night
- Average S/N ~1000
- Compute CCF
- 2. Add another spectrum/CCF (taken in a different night) to simulate planetary signal:
 - Multiplied by factor of **6x10⁻⁵** (1/15 000)
 - Vary its velocity: simulate planetary motion
- 3. Subtract stellar contribution with template CCF
 - Expected S/N_{CCF} ~ 60 000 (residuals of ~ 2×10^{-5})
 - I.e., we expect a 3-sigma detection

Simulations: results

www.astro.up.pt/exoearths

Simulations: results

- Example of resulting CCF (one single phase)
- Solution 3-sigma detection as expected!

Jupiter, A=0.3, P=3days, S/N_{spec} = 2000 / 10 min.

Stacked CCFs

Wednesday, February 27, 2013

9

Jupiter, A=0.3, P=3days, S/N_{spec} = 2000 / 10 min.

Stacked CCFs

Wednesday, February 27, 2013

Nuno C. Santos

Jupiter, A=0.3, P=3days, S/N_{spec} = 2000 / 10 min.

Wednesday, February 27, 2013

www.astro.up.pt/exoearths

Neptune, A=0.3, P=2days, S/N_{spec} = 2000 / 10 min.

Wednesday, February 27, 2013

www.astro.up.pt/exoearths

Super-Earth, A=0.3, P=2days, S/N_{spec} = 3000 / 10 min.

www.astro.up.pt/exoearths

Planet	Ag *	Needed S/N _{spe}
P=3days, R=1 R _{jup}	0.3	800
P=3days, R=1 R _{Nept}	0.3	6000
P=Iday, R=I R _{Nept}	0.3	1700
P=Iday, R=2 R _{Earth}	0.3	6000
P=Iday, R=I R _{Earth}	0.67 (Venus)	10 000

*0.3 is reasonable value according to Cowan & Agol (2011) and Santerne et al. (2011)

- From a simple extrapolation from UVES@VLT:
 - HIRES@ELT: G2V, mv~7, T_{exp}=900s => S/N~5000
 - Many available targets!!!

Flux: detect signals that are of the order of 10⁻⁵

- ELT collecting power critical
- Relatively short exposure times (due to planetary motion)

Spectral fidelity

- Very good FF correction (stable detector/well characterized)
- PSF stability needed
- High resolution (~10⁵): keep line contrast

In brief: we need a stable spectrograph and a large telescope! HIRES@ELT will be the right instrument.

Questions?

www.astro.up.pt/exoearths