

Supergiant Studies out to Virgo & Fornax

Norbert Przybilla

R.P. Kudritzki, M.A. Urbaneja (IfA Hawaii), A. Seifahrt (Univ. Chicago), K. Butler (LMU Munich), M.F. Nieva (Bamberg), H.-U. Käufl, A. Kaufer (ESO) & CRIRES-POP Project Team

NATURWISSENSCHAFTLICHE FAKULTÄT

Shaping E-ELT Science Ismaning - 28.02.2013

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG NATURWISSENSCHAFTLICHE FAKULTÄT

Science Drivers: Extragalactic Case

- stellar atmosphere physics: NLTE, winds, ...
- galactochemical evolution: abundance patterns/gradients
 galaxies in Hubble sequence in field, groups & clusters
- cosmic distance scale: FGLR $L \sim \log g/T_{eff}^4$

Flux-weighted Gravity-Luminosity Relationship

WLR
$$L \sim \dot{M} v_{\infty} R_*^{0.5}$$

Wind momentum-Luminosity Relationship

Nicholls, Dopita & Southerland (2012)

NATURWISSENSCHAFTLICHE

Shaping E-ELT Science Ismaning – 28.02.2013

Intro

Mass-Metallicity Relationship

 \bigcirc

Wavelength (Å)

Intro

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

NATURWISSENSCHAFTLICHE

NGC300: Abundance Gradient BSGs vs. Hll regions

Intro

- different trends for HII-regions from 3 different R₂₃-calibrations
- independent verification and extension via stellar analyses
- systematic bias in published gradients

Mass-Metallicity Relationship from BSGs

Intro

From the Local Group to Virgo & Fornax

NATURWISSENSCHAFTLICHE

Requirements

M100 in Virgo

Stellar Spectroscopy in Virgo & Fornax

problem: spatial resolution 1"@16.5Mpc: ~80pc

 diffraction-limited observation with ELT using AO (near-IR)

IFU high-definition mode spaxel-size 40mas

> Shaping E-ELT Science Ismaning - 28.02.2013

starfield around Sk -69 211 in LMC

1" x 1" @ Virgo

5.5' x 5.5' in LMC

FRIEDRICH-ALEXANDER

ERLANGEN-NÜRNBERG NATURWISSENSCHAFTLICHE

To resolve or not to resolve...

Diagnostic Problem

stellar analyses from interpretation of observation

- photometry, spectroscopy
- fundamental stellar parameter: L, M, R
- atmospheric parameters: T_{eff} , log g, ξ , Y, Z, etc.
- elemental abundances

NLTE: need for accurate atomic data

• IR-lines equiv. to Balmer lines as gravity indicators stellar parameters/FGLR

H atom: analytical solution except electron collisions: 3-body problem ab-initio data vs.

until recently: medium resolution spectroscopy

approximations

NLTE Diagnostics in Visual: Stellar Parameters

- ionization equilibria → T_{eff} elements: e.g. C, N, O, Mg, Si, S, Fe
- Δ T_{eff} / T_{eff} ~ 1%
 Stark broadened hydrogen lines → log g
 Δ log g ~ 0.05...0.10 (cgs)
- microturbulence
- helium abundance
- metallicity

+ other constraints, where available: SED's, ...

Elemental Abundances 1 (Visual)

NATURWISSENSCHAFTLICHE

Elemental Abundances

Elemental Abundances

Spectrum Synthesis in Visual

• several 10⁴ lines: ~30 elements, 60+ ionization stages

complete spectrum synthesis in visual (& near-IR) ~70-80% in NLTE

CRIRES spectroscopy

Benchmark spectroscopy: Galactic A-SGs with CRIRES

CRyogenic high-resolution Infrared Echelle Spectrograph CRIRES@VLT-UT1

- high resolving power R = $\lambda/\Delta\lambda \le 100,000$
- \bullet wavelength coverage 0.95 to 5.3 μm
- ~ 200 settings for full spectral coverage
- detector: 4 x 4096 x 512 Aladdin III InSn

Pilot program: 3 A-SGs

HD87737 (A0 lb) HD111613 (A2 labe) HD92207 (A0 lae)

- (partial) coverage of J, H, K, L band

Telluric Line Correction

UNIVERSITÄT

ERLANGEN-NÜRNBERG NATURWISSENSCHAFTLICHE

Near-IR Hydrogen Lines

high-resolution:

- detailed line profiles
- telluric lines resolved

Near-IR Hydrogen Lines

high-resolution:

- detailed line profiles
- telluric lines resolved

analysis:

- extension of previous modelling
- consistency with visual
- strong NLTE effects
- + Br α : stellar wind

distances via FGLR & WLR

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG NATURWISSENSCHAFTLICHE

Shaping E-ELT Science Ismaning - 28.02.2013

Near-IR Metal Lines

- metal lines in near-IR: C, N, O, Mg, Si, Fe + He
 - - galactochemical evolution

FRIEDRICH-ALEXANDER

NATURWISSENSCHAFTLICHE

UNIVERSITÄT ERLANGEN-NÜRNBERG

Near-IR Metal Lines

- metal lines in near-IR:
 C, N, O, Mg, Si, Fe + He

galactochemical evolution

- analysis:
 - extension of previous modelling
 - strong NLTE effects
 - good agreement with visual but

adjustment of some model atoms necessary (NLTE amplification) improved atomic data

CRIRES-POP

Lebzelter et al. 2012, A&A, 539, A109

- coverage of HRD for ~ 25 stars with K≤4.5mag with CRIRES spectra ~ 400h with VLT
- supergiants: A8, F3, G8, K3, M1
- high resolving power R = $\lambda/\Delta\lambda \le 100,000$
- almost full wavelength coverage 0.95 to 5.3 mm
- optical spectra: UVES-POP

CRIRES-POP

FAKULTÄT

Summary

- BSG/RSGs powerfull tools for studying
 - stellar evolution
 - galactochemical evolution
 - cosmic distance scale
- extragalactic stellar science with E-ELT
 near-IR MOS using MOSAIC
- pilot study of Galactic SGs with CRIRES@VLT + CRIRES-POP
 - high-resolution near-IR spectra
 - challenging telluric correction
 - testing & improving analysis methodology because of of challenging diagnostics

