

One approach: Galactic `archaeology'

Frebel 2010

Studying the First Stars

Grief et al. (2008)

'Damped Ly α systems' (DLAs) \equiv neutral gas of high density.

'Damped Ly α systems' (DLAs) \equiv neutral gas of high density.

Ideal for accurate measures of physical properties.

'Damped Ly α systems' (DLAs) \equiv neutral gas of high density.

Ideal for accurate measures of physical properties.

Highly complementary to local stellar studies.

The metal-poor DLA survey

22 DLAs with [Fe/H]<-2

C,N,O abundances in the metal-poor regime

Cooke et al. 2011, 12

The metal-poor DLA survey

22 DLAs with [Fe/H]<-2

C,N,O abundances in the metal-poor regime

Cooke et al. 2011, 12

The "Oxygen Problem"

[O/Fe] \approx stellar IMF

The O/Fe ratio at low metallicity

o Nissen et al. (2002) A\&A, 390, 235
\triangle Garcia-Perez et al. (2006) A\&A, 451, 621

The O/Fe ratio at low metallicity

For $[\mathrm{Fe} / \mathrm{H}]<-2$, halo stars and DLAs are indistinguishable in $[\mathrm{O} / \mathrm{Fe}]$ when stellar $[\mathrm{O} / \mathrm{H}]$ is measured from [O I] 16300 line.

The O/Fe ratio at low metallicity

- DLAs exhibit surprisingly little dispersion
- $[\mathrm{O} / \mathrm{Fe}]$ in DLAs agree well with that from stars in the halo of our Galaxy.
- DLAs are helping to resolve this much debated trend below $[\mathrm{Fe} / \mathrm{H}]<-1.0$

Two main results:

1) $[<\mathrm{O} / \mathrm{Fe}>] \approx+0.35$
2) Tentative evidence for a slight increase in [O/Fe] when $[\mathrm{Fe} / \mathrm{H}]<-3.0$

CEMP-no STARS

Nucleosynthesis of Nitrogen

N and O Abundances in H II regions and DLAs

1. $p \longleftrightarrow n$
2. $p(n, \gamma) d$
3. $d(p, \gamma)^{3} \mathrm{He}$
4. $d(d, n)^{3} \mathrm{He}$
5. $d(d, p) t$
6. $t(d, n)^{4} \mathrm{He}$
7. $t(\alpha, \gamma)^{7} \mathrm{Li}$
8. ${ }^{3} \mathrm{He}(n, p) t$
9. ${ }^{3} \mathrm{He}(d, p){ }^{4} \mathrm{He}$
10. ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$
11. ${ }^{7} \mathrm{Li}(p, \alpha)^{4} \mathrm{He}$
12. ${ }^{7} \mathrm{Be}(n, p)^{7} \mathrm{Li}$

J1419+0829, z=3.050, $\mathrm{Fe} / \mathrm{H}=1 / 200$ solar

J1419+0829, z=3.050, Fe/H = 1/200 solar

J1419+0829, z= 3.050, Fe/H = 1/200 solar

Spectral analysis tailored specifically to the determination of D / H and its error

$100 \Omega_{\mathrm{b}, 0} h^{2}(\mathrm{CMB})=2.22 \pm 0.042$

Keisler et al. 2011

$\mathrm{N}_{\nu}=3.0 \pm 0.6$

Why the E-ELT?

Oldest stars

Oldest stars

Oldest stars

Light Elements

Oldest stars

Metal-poor DLAs

QSO Luminosity Function
Glikman et al. 2011

QSO Luminosity Function
Glikman et al. 2011

QSO Luminosity Function
Glikman et al. 2011

8 SDSS QSOs with $z \geq 2, r \leq 18$

(courtesy of G. Becker)

~ 1000 SDSS QSOs with $z \geq 2, r \leq 21$

(courtesy of G. Becker)

Here's an example:

$\mathrm{J} 153219.56+171734.4, \quad m_{\mathrm{r}}=19.8, \quad z_{\mathrm{em}}=2.6, \quad \log N(\mathrm{H} \mathrm{I}) / \mathrm{cm}^{-2}=20.1$

Here's an example:

Here's an example:

$$
\mathrm{J} 153219.56+171734.4, \mathrm{~m}_{\mathrm{r}}=19.8, z_{\mathrm{em}}=2.6, \quad \log N(\mathrm{H} \mathrm{I}) / \mathrm{cm}^{-2}=20.1
$$

 Wavelength (8)

Full Chemical Fingerprints in MW Stars with $[\mathrm{Fe} / \mathrm{H}]<-5$

Full Chemical Fingerprints in MW Stars with $[\mathrm{Fe} / \mathrm{H}]<-5$

Fe-peak element ratios at $[\mathrm{Fe} / \mathrm{H}]<-3$

Full Chemical Fingerprints in MW Stars with $[\mathrm{Fe} / \mathrm{H}]<-5$

Fe-peak element ratios at $[\mathrm{Fe} / \mathrm{H}]<-3$

Deuterium

Significantly more precise measures of $\Omega_{\mathrm{b}}(\mathrm{BBN})$

The Future

