Mid-IR astronomy with the E-ELT: The case for evolved stars

Martin Groenewegen

Royal Observatory of Belgium, Brussels

martin.groenewegen@oma.be

ESO, 26 Feb. 2013 – p.1/37

Overview

(JWST and the ELTs: An Ideal Combination, Garching, April 13-16, 2010)

- Introduction: current issues in evolved star research
- Science cases for E-ELT in the Mid-IR (HR & LR spectroscopy, imaging-broadband)
- Conclusions

Some caveats:

- Focus on AGB stars (not PN, LBV/WR, SN)
- No in depth comparison to other facilities that are relevant before 2023 ESO, 26 Feb. 2013 p.2/37

AGB stars

ESO, 26 Feb. 2013 – p.3/37

Central Star

Betelgeuse. ESO press release 0927 (2009). Kervella, Ohnaka. AMBER, NACO ESO, 26 Feb. 2013 – p.4/37

Katrien Kolenberg

ESO, 26 Feb. 2013 – p.5/37

Lifecycle of dust and gas

http://hea-www.cfa.harvard.edu/CHAMP/EDUCATION/PUBLIC/starlifecycles_pics.html ESO, 26 Feb. 2013 – p.6/37

Shaping PNe

Key Questions

What is the mass-loss return of dust and metal enrichment by AGB stars (versus SNe) How does this depend on time, mass, metallicity? Driving of the wind (radiation pressure on dust, but....) C-rich versus O-rich (different dust species, different wind driving?) Thermal Pulses followed by nucleosynthesis near the core (convection) Pulsation non-spherical role of binarity

HR Spectroscopy

Sahai et al. (2009), using FTS CO rot-vibr lines 2100-2200 cm⁻¹ resolution of 0.02 cm⁻¹ 4.55-4.76 μ m, R= 107 000 ESO, 261

ESO, 26 Feb. 2013 – p.10/37

4m telescope no integration time, no S/N given, M= -2.3

"... these data, taken over 7 epochs, show that the circumstellar environment of V Hya consists of a complex high-velocity (HV) outflow containing at least six kinematic components with expansion velocities ranging between 70 and 120 km/s, together with a slow-moving normal outflow at about 10 km/s. Physical changes occur in the HV outflow regions on a time-scale as short as two days. The intrinsic line-width for each HV component is quite large (6 - 8 km/s) compared to the typical values (~ 1 km/s) appropriate for normal AGB circumstellar envelopes (CSEs), due to excess turbulence and/or large velocity gradients resulting from the energetic interaction of the HV outflow with the V Hya CSE."

CRIRES

Lebzelter et al. (2012) CRIRES-POP complete 0.97-5.3 μ m region in 200 settings R= 96 000 at 2.17 μ m

"A complete scan of a star with K = 1 mag reaching a S/N of at least 200 throughout the entire spectral range takes almost nine hours and is strongly dominated by observational overheads (close to 80%)"

M-band: up to 20 min. per setting (K = M = 4.9)25 objects (1 S, 1 C)

C-star X TrA CN, CS, C₂

CRIRES

Ryde et al. (2010)Bulge GiantsCNO, α elements, Fe, Si, S, and TiR= 70 000, H= 12.0, S/N= 90, t_{int} = 80 min

Smith et al. (2009), YSO C¹⁶O, C¹⁷O, C¹⁸O; 30 min., S/N= 300, M= $+2.0_{ESO, 26 \text{ Feb. 2013 - p.14/37}}$

LR spectroscopy \Rightarrow **Dust**

de Vries et al. (2010) The opacities of crystalline silicate forsterite

Jones et al. (2012)

Q-band $\sim 21 \ \mu m$

ESO, 26 Feb. 2013 – p.16/37

Jiang et al. (2013)

ESO, 26 Feb. 2013 – p.17/37

LR spectroscopy

MSX LMC 61 (Groenewegen & Sloan, in prep.) $L = 20\ 800\ L_{\odot}, \tau_{0.5} = 2.5, \dot{M} = 6.5 \cdot 10^{-7}\ M_{\odot}\ yr^{-1}$

210 mJy at 8.0 μ m

ELT ETC S/N= 30 R= 200 1hour F= 0.65 mJy

 $\begin{array}{l} L = 10 \ 000 \ \mathrm{L}_{\odot} \\ \Rightarrow 0.6 \ \mathrm{Mpc} \end{array}$

VISIR

Lagadec et al. (2011) PAH (8.59 μ m), SiC (11.85 μ m), Ne II (12.81 μ m) 75 mas pixelscale, FoV= 19 × 19 arcsec², t_{int} = 30 sec FWHM from 250-500 mas

"We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, TRecs/ Gemini-South and Michelle/Gemini-North.We found that all the proto-planetary nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non-resolved."

ESO, 26 Feb. 2013 – p.22/37

VISIR

Momany et al. (2012) PAH (8.59 μm)

127 mas pixelscale, FoV= 32×32 arcsec², 1.8h per pointing

"Dusty red giants and asymptotic giant stars are confined to the 47 Tuc [MG: at 5 kpc] long period variables population. In particular, dusty red giants are limited to the upper one N8.6 μ m magnitude below the giant branch tip. This particular luminosity level corresponds to ~ 1000 L_☉ in previous determinations to mark the onset of dusty mass-loss"

F F1 F • . . . \bigcirc X.

(upper) 2MASS with pointings; (lower) VISER^{26 Feb. 2013 – p.24/37}

HRD, combined with ACS N8.6= 10 corresponds to about 5 mJy

ESO, 26 Feb. 2013 – p.25/37

Of brightest object $R=300, 9.8 \ \mu m + 11.4 \ \mu m$ central wavelength

ESO, 26 Feb. 2013 – p.26/37

Broadband

MSX LMC 1298 (\rightarrow SED peaks near *M*-band) $L = 29\ 200\ L_{\odot}, \tau_{0.5} = 10, \dot{M} = 4.4 \cdot 10^{-6}\ M_{\odot}\ yr^{-1}$

ESO, 26 Feb. 2013 – p.27/37

Broadband

ERO 0550261 $L = 11\ 000\ L_{\odot}, \tau_{0.5} = 120, \dot{M} = 3.6 \cdot 10^{-5}\ M_{\odot}\ yr^{-1}$

ESO, 26 Feb. 2013 – p.28/37

Dust Production in the LMC

Туре	N	$\Sigma \dot{D}$	%	$<\dot{D}>$
		$(M_{\odot}/{ m yr})$		$(M_{\odot}/{ m yr})$
x-AGB	313	6.26×10^{-7}	65.9	2.0×10^{-9}
C-AGB	1 559	1.21×10^{-7}	12.7	7.8×10^{-11}
O-AGB	1 851	0.52×10^{-7}	5.5	2.8×10^{-11}
aO-AGB	1 243	0.26×10^{-7}	2.7	2.1×10^{-11}
RSG	2 611	0.31×10^{-7}	3.3	1.2×10^{-11}
FIR*	50	0.96×10^{-7}	10.1	1.9×10^{-9}
Total, no FIR	7 577	8.6×10^{-7}	90.5	1.1×10^{-10}

Remarks:

FIR= contaminants (YSO, PNe); quoted are *DUST* MLR, so multiply by ~ 200 .

Boyer et al. (2012) Matsuura et al. (2009, 2012)

magnitude	Flux (mJy)	magnitude	Flux (mJy)
MSX LMC 1298		ERO 0550261	
19.97	0.02		
18.24	0.11		
15.47	0.9		
12.47	11		
10.22	54	22.1	0.001
7.28	296	12.29	3.0
6.53	412	10.05	16
4.89	413	5.49	240
4.41	204	3.47	480
4.19	152	2.86	517
_	0.16	_	1.2
	magnitude MSX LN 19.97 18.24 15.47 12.47 10.22 7.28 6.53 4.89 4.41 4.19	magnitudeFlux (mJy)MSX LMC 1298 19.97 0.02 18.24 0.11 15.47 0.9 12.47 11 10.22 54 7.28 296 6.53 412 4.89 413 4.41 204 4.19 152 $ 0.16$	magnitudeFlux (mJy)magnitudeMSX LMC 1298ERO 019.97 0.02 18.24 0.11 15.47 0.9 12.471110.22 54 22.17.2829612.296.5341210.054.894135.494.191522.86- 0.16

N-band 0.05 mJy S/N= 30 1hour (ETC for 42m) (METIS 0.03 mJy S/N= 10 1hour) $L = 5\ 000\ L_{\odot} \Rightarrow 1.9\ Mpc$ outer radius of 1000 inner radii $\Rightarrow 20\ mas\ @_{ES} 1.9\ Mpc_{37}$

Some famous AGB+SGs

Star	Radius (mas)	Distance (kpc)	M-mag	N-mag
R Dor	31.5	0.055	-4.4	-5.0
α Ori	23.2	0.15	-4.3	-5.0
CW Leo	17.7	0.12	-5.5	-7.7
o Cet	15.6	0.09	-3.4	-4.4
R Cas	9.9	0.13	-2.3	-3.6
VY CMa	6.9	1.2	-4.2	-6.1
U Hya	6.7	0.2	-1.3	-1.8
R Scl	5.6	0.3	-1.2	-1.8
U Ant	4.8	0.3	-0.9	-1.4
R For	2.9	0.7	-0.9	-2.0
S Sct	2.6	0.4	0.5	-0.0
V CrB	2.5	0.7	0.3	-1.0
AFGL 3116	2.3	0.7	-0.4	-3.0
AFGL 3068	2.0	1.2	1.6	-3.0
OH 26.5	1.9	1.6	0.3	-2.0
TT Cyg	1.5	0.5	1.5	1.0
AFGL 190	0.93	2.9	4.1	-0.8
IRC +10 420	0.48	7.0	2.2	-3.3
AFGL 2343	0.22	5.0	4.8	1.3

ESO, 26 Feb. 2013 – p.31/37

Concluding remarks

- + HR spectroscopy: abundances, isotope ratios, in (nearby) LG galaxies
- NIR will be better/sufficient in most cases
- + HR spectroscopy: kinematics (shaping of PNe)
- To study the acceleration of wind, resolution of 100 000 is low-ish (<1 km/s desirable).

ALMA in most extended configuration with 16 km baseline:

6 mas @ 675 GHz, 37 mas @ 110 GHz 0.01 km/s @ 110 GHz

Concluding remarks

- + LR spectrocopy: dust in LG galaxies
- JWST more sensitive, and larger wavelength coverage, but at lower spatial resolution.
 Case for Q-band
- + Imaging: shape of CSE, shaping of P-AGB, PNe
- Saturation limit? Neutral Density filter versus Coronograph Need to probe as close as $\sim 1.5R_{\star}$
- + Imaging: SED of dustiest AGB stars in LG
- JWST more sensitive, but at lower spatial resolution.
 Case for *Q*-band

THE END