Shaping the E-ELT – February 25th, 2013, Garching

Exoplanetology with EELT-CAM & IFU

Gaël Chauvin

- IPAG/CNRS -Institute of Planetology & Astrophysics of Grenoble/France

Observing New Worlds

- I- Exoplanets
 - Techniques & Results
 - Open questions

II- E-ELT CAM & IFU perspectives

- Exoplanetology at the E-ELT era
- Science drivers & Instrumental Requirements

I- Introduction Observing New Worlds

Exo-Planets/exo-Biology paradigm

- * Stellar Formation (Initial Conditions)
- ★ Formation & Physics of EPs
- ★ Architecture & Evolution
- ✤ Favorable conditions for Life
- ★ Exo-Biology & Bio-Signatures

(Planetary formation – Artist's view)

★ Radial Velocity

. Indirect technique: Doppler shift (low-activity stars)

. Orbital & Physical properties:

> M_p.sin(i), P, e, a, ω & T₀
 > Spin-Orbit Alignment
 > Architecture & Stability
 > exo-Earths & Habitable Zone
 Dumusque et al. 12, Bonfils et al. 11

http://exoplanet.eu/

✤ Radial Velocity

- . Indirect technique: Doppler shift (low-activity stars)
- . Orbital & Physical properties:
- > M_p.sin(i), P, e, a, ω & T₀
 > Spin-Orbit Alignment
 > Architecture & Stability
 > exo-Earths & Habitable Zone
 Dumusque et al. 12, Bonfils et al. 11

. Statistics: more than 800 exoplanets

- > Occurrence down to Super-Earths
- > Mass/Orbital distributions
- > Planetary host dependence:

(Fe/H, alpha-element, SpT, binarity...) Udry & Santos 07

Exoplanet Mass distribution, Mayor et al. 11

★ Transit

. (In)direct technique: 1^{ary}/2^{ary} eclipse. (crowded fields)

Wpłoneł (M_{Jup}

. Orbital & Physical properties:

> R_{*}/R_p, M_p, P, a, i, T₀
 > Planetary Interiors

> Multiple: Architecture & Stability

> Circumbinary planets

Doyle et al. 11; Balatha et al. 12

http://exoplanet.eu/

★ Transit

. (In)direct technique: 1^{ary}/2^{ary} eclipse. (crowded fields)

. Orbital & Physical properties:

> R_{*}/R_p, M_p, P, a, i, T₀
 > Planetary Interiors

> Multiple: Architecture & Stability

> Circumbinary planets

Doyle et al. 11; Balatha et al. 12

★ Transit

. (In)direct technique: 1^{ary}/2^{ary} eclipse. (crowded fields)

. Orbital & Physical properties:

> R_{*}/R_p, M_p, P, a, i, T₀
 > Planetary Interiors

> Multiple: Architecture & Stability

> Circumbinary planets Doyle et al. 11; Balatha et al. 12

Transmission/emission spectroscopy
 Composition (H2O, CO, Nal, KI... Haze)
 Vertical T-P structure, atmospheric circulation & evaporation
 Swain et al. 08; Desert et al. 12

★ μ-lensing

. Indirect technique: Unique Rel. Event 100.0 Stors/BDs (Crowded fields)

pionei (M_{Jup}

- . Orbital & Physical properties:
 - > M_p, M_{*}, d, P, a (1-5 AU)
 - > Super-Earths
- . Free-floating, wide orbit planets? Gould et al. 06; Cassan et al. 12

★ Astrometry

- . Indirect technique: Reflex motion (Targets: Nearby stars)
- . Orbital & Physical properties:

> M_p , P, i, e, a, ω , T_0 (1-5 AU) Bean et al. 07, 08; Benedict et al. 02, 10 Muterspaugh et al. 10; Sozzetti et al. 10

http://exoplanet.eu/

★ μ-lensing

. Indirect technique: Unique Rel. Event (Crowded fields)

. Orbital & Physical properties:

> M_p, M_{*}, d, P, a (1-5 AU)

> Super-Earths

. Free-floating, wide orbit planets? Gould et al. 06; Cassan et al. 12

★ Astrometry

Indirect technique: Reflex motion (Targets: Nearby stars)
Orbital & Physical properties:

> M_p , P, i, e, a, ω , T_0 (1-5 AU) Bean et al. 07, 08; Benedict et al. 02, 10 Muterspaugh et al. 10; Sozzetti et al. 10

Benedict et al. 10

✤ Direct Imaging

. Direct technique: Planet's photons (Targets: young & nearby stars)

. Orbital & Physical properties

- > L, a , e, i, ω, TO
- > Giant planets at wide orbits (>10 AU)
- > Multiple: Architecture & Stability
- > Planet disk connection
- > Gravitational Instability (HR8799)?

Kasper et al. 07; Rameau et al. 13

✤ Direct Imaging

. Direct technique: Planet's photons (Targets: young & nearby stars)

. Orbital & Physical properties

- > L, a , e, i, ω, TO
- > Giant planets at wide orbits (>10 AU)
- > Multiple: Architecture & Stability
- > Planet disk connection
- > Gravitational Instability (HR8799)?

Kasper et al. 07; Rameau et al. 13

http://exoplanet.eu/

✤ Direct Imaging

. Direct technique: Planet's photons (Targets: young & nearby stars)

. Orbital & Physical properties

- > L, a , e, i, ω, T0
- > Giant planets at wide orbits (>10 AU)
- > Multiple: Architecture & Stability
- > Planet disk connection
- > Gravitational Instability (HR8799)?

Chauvin et al. 10; Rameau et al. 13

. High-contrast spectroscopy

> Non-strongly irradiated EGPs

> Low-gravity, composition, non-LTE, clouds, Bonnefoy et al. 09, 13; Madhusudhan et al . 11

Observing New Worlds

- I- Exoplanets
 - Techniques & Results
 - Open questions

II- E-ELT CAM & IFU perspectives

- Exoplanetology at the E-ELT era
- Science drivers & Instrumental Requirements

II/ EELT-CAM & IFU Timeline: current/future missions

2012 🕇 2	2014	2016	2018	2020	2022	2024	2026	2028	
— Ground: Ha — Space: <i>Spitz</i> - VLT & VLTI PRIMA, K-	rps N/S, S zer, Hersch 2 nd & 3 rd MOS, SPH	OPHIE, NaCo nel, Kepler, C generation ERE, MUSE, 1	o, VISIR, CRIRI oRoT ESPRESSO, GR	ES, WASP – RAVITY					
- ALMA (AC	A) —— AIA ——	- SKA	- Cheops —						
			- JW	/ST	- EChO/PL - TMT - GM1 - E-I	ATO?			

II/EELT-CAM&IFU E-ELT & other competitive projects

Discoveries by opening a new parameter space

- Increased Sensitivity
- Spatial resolution (10 mas scale)

50m2 1 μm 25mas

400m2 9mas

600m2 7mas

(JWST: 25m2) (JWST: 34mas)

1200m2

5mas

II/ EELT-CAM & IFU Description & Agenda

Instruments - First Light	AO	Mode	λ (μm)	Resolution	FoV & Sampling	Add. mode
ELT-1: CAM (MICADO) - 2022	SCAO, MCAO	- IMG - MRS	0.8 – 2.4	3000	53.0" / 3 mas	Coronography
ELT-2 IFU (HARMONI) - 2022	SCAO, LTAO	- IFU	0.5 – 2.4	4000 10 000 20 000	0.5*1.0" - 5.0*10.0" / 4 – 40 mas	Coronography
ELT-3: MIR (METIS) - 2024	SCAO, LTAO	- IMG - MRS - IFU	3 – 13 3 - 5	5000 100 000	18" / 12 mas 0.4*1.5 / 4 mas	Coronography Polarimetry
ELT-4/5: HIRES (CODEX/SIMPLE) - 2026/2028	No AO SCAO, MCAO, LTAO	- HRS	0.37 – 0.71 0.84 – 2.50	130 000 130 000	0.82 0.027*0.5	
ELT-4/5: MOS (EAGLE/EVE/ DIORAMA) - 2026/2028	No AO, GLAO MCAO	Slits IFUs IFUs	0.37 – 1.4 0.37 – 1.4 0.8 – 2.45	300- 2500 5000 - 30 000 4000 - 10 000	6.8"/ 0.1" 420' / 0.3" 420' /	
ELT-X: PCS (EPICS) - 2025/2030	ΧΑΟ	EPOL IFS	0.6 – 0.9 0.95 – 1.65	125 – 20 000	2.0" / 2.3 mas 0.8" / 1.5 mas	Coronography Polarimetry

II/ EELT-CAM & IFU in a nutshell

NIR Imager & Long-slit Spectrograph > R. Davies's Talk

AO flavors:

Seeing-limited: no AO & GLAO Diffraction-limited: SCAO or MCAO

Sensitivity and resolution

6 mas (J-band) to 10 mas (K-band) up to 0.5/3.0 mag deeper/JWST, Platescale = 3 and 1.5 mas/pixel FoV = 53" and 6"

Precision astrometry

<40 µas over 1' in one epoch 10 µas/yr after 3/4 years

Wide coverage spectroscopy

0.8-2.5 μm simultaneously at R~5000-10000

II/ EELT-CAM & IFU in a nutshell

VIS-NIR Integral Field Spectrograph > N. Thatte's Talk

AO flavors:

Seeing-limited: no AO or GLAO Diffraction-limited: SCAO, LTAO (?)

IFU concept:

Image slicer/splitter (SINFONI-like) New no amorph design

Sensitivity and resolution

6 mas to 10 mas (J, K-band resp.) Platescale = 40, 20, 10 & 4 mas/pixel FoV: 10×5" to 1.0"×0.5"

Spectral resolution

Various setting $0.5 - 2.5 \mu m$ R = 4 000, 10 000 & 20 000

II/ EELT-CAM & IFU Drivers for Exoplanetology

a/ High-Precision Astrometry

b/ High-Contrast Imaging

& Spectroscopy

II/ EELT-CAM & IFU Drivers for Exoplanetology

a/ High-Precision Astrometry

b/ High-Contrast Imaging

& Spectroscopy

***** The GAIA Legacy (2013 – 2018)

GAIA Perfomances (eom):

Bright (6 < V < 13): **10 µas**Faint (V = 15): 10 - 30 µasVF (V = 20): 100 - 300 µas

Exoplanet Programme:

Volume limited < 200 pc survey AFGK to early-M dwarfs, > 10⁴ EGPs expected btw 2 – 4 AU Sozzetti 12

But less performant for very-low mass stars

 Exo-Jupiter, 5 AU, @10pc, G
 = 500 μas

 Exo-Earth, 1 AU, @10 pc, G
 = 0.3 μas

 Exo-Saturn, 1 AU, @10pc, M
 = 50 μas

 Exo-Neptune, 0.5AU, @10pc, L
 = 10 μas

★ Exoplanets around late-M, L, T and Y dwarfs

FORS2 heritage, Lazorenko et al. 11 Fov = 4.2', 0.1"/pix, no AO Astrometric precision = 100 μas PALTA survey of L, T & Y stars/BDs Sahlmann et al. 11, 13 (in prep)

CAM: FoV = 53", 3 mas/pix, no AO, Availability of reference stars (>10) Expected precision = **5 - 10 μas/meas**

Exoplanet: Minimum detectable mass

Primary = 0.06 M_{sun} 30 meas. over the full orbit

Sahlmann, Queloz 12, priv. comm.

★ Exoplanets around late-M, L, T and Y dwarfs

FORS2 heritage, Lazorenko et al. 11 Fov = 4.2', 0.1"/pix, no AO Astrometric precision = 100 μas PALTA survey Sahlmann et al. 11, 13 (in prep)

CAM: FoV = 53", 3 mas/pix, no AO, Availability of reference stars (>10) Expected precision = **5 - 10 μas/meas**

Exoplanet: Minimum detectable mass

Primary = 0.06 M_{sun} 30 meas. over the full orbit

Sahlmann, Queloz 12, priv. comm.

★ Exoplanets around late-M, L, T and Y dwarfs

FORS2 heritage, Lazorenko et al. 11 Fov = 4.2', 0.1"/pix, no AO Astrometric precision = 100 μas PALTA survey Sahlmann et al. 11, 13 (in prep)

CAM: FoV = 53", 3 mas/pix, no AO, Availability of reference stars (>10) Expected precision = **5 - 10 μas/meas**

Exoplanet: Campaign detection limit Primary = 0.06 M_{sun} 30 meas. over 3 yrs (10 meas./semester) 1 measurement = 0.5h, i.e 1.7n/target over 3 yrs

Sahlmann, Queloz 12, priv. comm.

II/ EELT-CAM & IFU Drivers for Exoplanetology

a/ High-Precision Astrometry

b/ High-Contrast Imaging

& Spectroscopy

Characterizing known EGPs

Context:

• Observed/Predicted Contrast for Giant Planets (H-band)

Bpic b, 8 M_{Jup}, 12 Myr, 19.3pc, A5V Young 1 M_{Jup}, 50 Myr, 20pc, G2V Cold 1 M_{Jup}, 0.5 Gyr, 20pc, G2V **10⁻⁴** at 0.4" (8 AU) **10⁻⁷** at 0.5" (10 AU) **10⁻⁹** at 0.5" (10 AU)

- Giant Planet Imagers: VLT/SPHERE and GPI (2013); JWST (2018) NaCo performances (H-band): 10⁻⁵ at 0.5" SPHERE performances (H-band): 10⁻⁶ at 0.1", 10⁻⁷ at 0.5"
- GAIA (2018): 10⁴ planetary systems (including young stars at less than 200 pc)

Characterizing known EGPs

Context:

• Observed/Predicted Contrast for Giant Planets (H-band)

Bpic b, 8 M_{Jup}, 12 Myr, 19.3pc, A5V Young 1 M_{Jup}, 50 Myr, 20pc, G2V Cold 1 M_{Jup}, 0.5 Gyr, 20pc, G2V **10**⁻⁴ at 0.4" (8 AU) **10**⁻⁷ at 0.5" (10 AU) **10**⁻⁹ at 0.5" (10 AU)

- Giant Planet Imagers: VLT/SPHERE and GPI (2013); JWST (2018) NaCo performances (H-band): 10⁻⁵ at 0.5" SPHERE performances (H-band): 10⁻⁶ at 0.1", 10⁻⁷ at 0.5"
- GAIA (2018): 10⁴ planetary systems (including young stars at less than 200 pc)

CAM & IFU: Characterizing systems with known Giant Planets

BUT, should achieve contrast performances: **10**-7-**10**-8 at **0.1-0.5**" for *photometric, astrometric* and *spectroscopic* characterization

***** Characterizing known EGPs

Instrumental requirements:

- High, stable diffraction-limited AO correction:
 > SCAO (70-80% Sr in K-band, bright sources)
- 2. Stellar halo suppression:

> Occultation / Apodizer / Coronagraph (CLC, ALC, AGPM)

Quasi-statics speckles calibration:
 > differential imaging (ADI, SDI)
 > NCPA corrections

Goal: 10⁻⁷-10⁻⁸ at 0.1-0.5"

1" (i.e 19AU@19pc)

***** Characterizing known EGPs

Instrumental requirements:

- High, stable diffraction-limited AO correction:
 > SCAO (70-80% Sr in K-band, bright sources)
- 2. Stellar halo suppression:

> Occultation / Apodizer / Coronagraph (CLC, ALC, AGPM)

Quasi-statics speckles calibration:
 > differential imaging (ADI, SDI)
 > NCPA corrections

Goal: 10⁻⁷-10⁻⁸ at 0.1-0.5"

***** CAM & IFU Contrast Performances

Star 50 Myr at 20pc

★ CAM & IFU Contrast Performances

★ 1/3 Mass-Luminosity Relation

Dynamical Mass:

. not directly measured in Imaging . Combined with GAIA, RV (*activity*)

Calibrating formation & evolutionary models

- . not-calibrated at young ages
- . Role of initial conditions (Formation) (Baraffe et al. 03; Burrows et al. 03)
- . Gas-accretion Evolution

> Energy lost during the gas-accretion phase?

(Marley et al. 07; Fortney et al. 08)

★ 2/3 Giant planet atmospheres

***** 3/3 Architecture of planetary systems

Exoplanet's revolution

β Pic b, P = 17 - 21 yrs; a = 8 - 10 AU e < 0.17; i = 88.5 +- 1.5 deg Ω = 212.5 +- 1.5 deg

Planet – Planet Interactions Dynamical stability and resonances

Planet – disk connection
β Pic b in the inner warped disk
at the origin of the warp
Lagrange et al. 12

★ 3/3 Architecture of planetary systems

Exoplanet's revolution

β Pic b, P = 17 - 21 yrs; a = 8 - 10 AU e < 0.17; i = 88.5 +- 1.5 deg Ω = 212.5 +- 1.5 deg

Planet – Planet Interactions Dynamical stability and resonances

Planet – disk connection
β Pic b in the inner warped disk
at the origin of the warp
Lagrange et al. 12

Grady et al. 12; Kalas et al. 04; Rameau et al. 12; Lagrange et al. 12; Buenzli et al. 10

Conclusions

Exoplanetology with EELT- CAM & IFU: YES!

2022, a rich context for exoplanets

(HARPS N/S, SPHERE, GAIA, Cheops, ESPRESSO...)

- 10⁴ planetary systems (< 200 pc) in astrometry
- Population of wide orbit planets probed by SPHERE, GPI ٠

Definitively, CAM & IFU more for Giant Planet Characterization a/ **High-precision astrometry** around VLMs (late-M, L, T and Y-types) b/ High-contrast Imaging & Spectroscopy of known systems

- Mass Luminosity relation (overlap GAIA & RV) 0
- Atmosphere of self-luminous giant planets 0
- Planetary system architecture and stability 0

BUT, important requirements:

- Goals: Astrometric precision

 - Contrast

= 5 - 10 μas/measurement $= 10^{-7} - 10^{-8}$ at 0.1-0.5"

★ Radial Velocity

- . Indirect technique: Doppler shift (low-activity stars)
- . Orbital & Physical properties:
 - > M_p.sin(i), P, e, a, ω & T₀
 > Spin-Orbit Alignment
 > Architecture & Stability
 > exo-Earths & Habitable Zone
- . Statistics: more than 800 exoplanets
 - > Occurrence down to Super-Earths
 - > Mass/Orbital distributions
 - > Planetary host dependence:

(Fe/H, alpha-element, SpT, binarity...) Udry & Santos 07

 α Cen Bb, 1.13 M_{Earth} , 3.24 days, Dumusque et al. 12

