SCIENCE CASE AND INSTRUMENT SPECS METIS

Bernhard Brandl (Leiden University) on behalf of the METIS Team Shaping E-ELT Science and Instrumentation, 26 February 2013 Introduction

μετίς

What is METIS?

The 'Mid-infrared ELT Imager and Spectrograph' METIS is <u>the</u> instrument for the thermal infrared ($\lambda > 3 \ \mu m$)

Considerations

METIS

- An imager at L/M & N band with an 18"×18" wide FOV. The imager includes:
 - coronagraphy at L/M and N-band
 - long slit, low-resolution (R ~ 5000) spectroscopy at L/M & N
 - **polarimetry** at N-band [TBC]
- An IFU fed, high resolution spectrograph at L/M band [2.9 – 5.3µm] with a FoV of ≈0.4″×1.5″ and a spectral resolution of R≈100,000.

All subsystems work at the diffraction limit (SCAO & LTAO)

Μετίs Instrument Simulator

8

METIS

Sensitivity

[mJy/arcsec ^ 2]

Take-away Message:

METIS will provide:

JETIS

HST-like resolution but at mid-IR wavelengths

Spitzer/IRAC-like imaging sensitivity (point sources)

JWST/NIRSPEC-like line sensitivity @ 3-5µm (unresolved lines)

METIS Science

Overview

Science Drivers

Martian atmosphere

METIS

IRc2

Exoplanets

MYSOs & UCHÌIRs

Evolution of high-z Galaxies

"Starburst Clusters"

Mass segregation & IMF \leftarrow cluster membership

Evolution of disks in extreme environments

METIS

Morphology & Evolution of IR Luminous Galaxies

METIS simulator \rightarrow t_{int} = 5 hours

Model (SEDs!)

(Fu et al. 2012)

METIS Science

Exoplanets

Key Questions

What are their physical properties? → Characterization

METIS is particularly suited for these studies because:

METIS

Planet/Star contrast = f{\lambda}

Example Detection @M

Simulated:

METIS

- Star: M5V @ 10 pc (50 Myr old)
- Planet: 1 M_{Jup} @ 4AU (Spiegel & Burrows 2012)

"Observed" with METIS @ 4.7µm in **5 hours** using ADI techniques and AO (seeing ~0.67" - 0.75")

λετίς Discovery Space @ 4μm

- Simulations of ...: 1. Planet population (M,P extrapolation from RV)
 - 2. METIS contrast curve
 - 3. Random orbital location of the planets

Relative number of detected planets

0.0	0.2	0.4	0.6	0.8	1.0

E-ELT/METIS L-band

Thermal-IR imaging shifts the distribution of sampled planets to substantially cooler T_{eq} (~200 K) planets at somewhat larger distances → highly complementary to EPICS!

Transit Spectroscopy

First atmosphere detection of a non-transiting planet, τ-Bootis b (Brogi et al., Nature 2012) 15 hours CO absorption@K-band with CRIRES/VLT for this K=3.4 star

METIS

- L-band: stronger features, better contrast esp. for cooler planets
- with the E-ELT/METIS dozens of systems can be characterized
- Individual spectral lines will be detected → planet rotation, seasons

METIS Science

Protoplanetary Disks

Key Questions

 Protoplanet – disk interaction: continuum imaging may suggest presence of p-planets, but only resolved (non-Keplerian) dynamics can prove it

PP disk evolution: what is the dominant mechanism that disperses the primordial gaseous disk? Protoplanets? Photoevaporation? → What is the likelihood that the inner disk is cleared by a forming planetary system before photoevaporation?

 Chemical processes in disks: disk composition ⇔ planets E.g., 3.3 µm PAH emission: strong in early type stars but not in lowmass stars.

Μετίs Line Imaging of PP-Disks

Line imaging reduces emission from star <u>and</u> background!

¹²CO v=1-0 P(5) Exp. time = 2800 s SR 21 @ 125 pc – inclination of 20° 0.2 0.0 Typical ALMA line -0.2imaging beam **EELT-METIS** beam -0.20.2 0.0 ALMA beam: arcsec Semenov et al. (2008)

→ ¹²CO line detectable out to ≥ 15 AU (1.5 R_{jup}) in t_{int} ≤ 1hr.

Discovery space:

- CRIRES (~20 min) spatially resolved CO lines (~10 targets)
- METIS: surveys of hundreds of targets

IFU high resolution spectroscopy provides dynamical info!

METIS Disks: METIS 🗇 ALMA

	METIS	ALMA
Target	inner disk – hot gas	outer disk – cool gas
Spectroscopy beam	0.03" @ 4.7μm	≈0.10"
Detail reconstruction	full aperture	synthesized aperture

The near-term Future

Science Case Updates

METIS Science Team Michael Meyer (chair) Joao Alves **Maarten Baes** Hermann Böhnhardt Wolfgang Brandner **Ewine van Dishoeck** Thomas Henning Ulli Käufl Pierre-Olivier Lagage Emeric Le Eloc'h Toby Moore René Oudmaijer Hans-Martin Schmid Christoffel Waelkens Paul van der Werf **Bodo Ziegler**

METIS

Project Science Team Giuseppe Bono (chair) Jordi Cepa **Gael Chauvin** Thérèse Encranaz **Roland Gredel** Tom Herbst Isobel Hook Christoph Keller **Oleg Kochukhov Rubina Kotak Carlos Martins Didier Queloz** Roberto Ragazzoni

Project Management

s, and considering their necessary integration with adaptive irding instrument-architecture and specifications must be started sed telescope design and depending on the AO approach
onstruction with the existing MICADO and HARMONI consortia,
or enabling technology development and instrument construction
adiness can be demonstrated in 2013, a mid-IR Il be delivered as ELT-3. Since the METIS consortium contains itutes with mid-IR instrument experience (it is essentially the will plan to contract directly with that consortium.
or enabling technology development and instrument construction
or enabling technology development and instrument construction
or enabling technology development and instrument construction

	ELT-IFU	ELT- CAM	ELT-MIR	ELT-4	ELT-5	ELT-6	ELT-PCS
Commissioning	2022	2022	2023	2024	2026	2028	2025-30

[8/9/2012] ESO sees the overall consortium (...) to be a solid one with sufficient experience to bring the instrument to successful conclusion.

ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München

Solid funding situation:

METIS

√ secured

V secured first phase

26/02/2013

Detectors

Module	Туре	Pixels
AO WFS (NIR)	SELEX SAPHIRA	600 x 600
L/M band imaging	HAWAII-2 RG	2048 x 2048
N band imaging	AQUARIUS	1024 x 1024
L/M IFU spectroscopy	HAWAII-4 RG	4096 x 4096

Side note on the recent performance issues with the AQUARIUS:

- The AQUARIUS detector works albeit with higher 1/f noise
- The METIS chopper can calibrate the 1/f noise
- Less than 1-in-20 "METIS-pixels" is an AQUARIUS pixel
- Sufficient time to develop calibration strategies and even

1ETIS

Technology Developments

Immersed Grating

METIS

Netherlands Institute for Space Research

- Wavelengths 2.9 5.3 μm
- Silicon, size: 150mm × 90mm
- Groove density: 50 mm⁻¹ (20th 42nd)
- WFE < 100 nm RMS

2-D Cryo-Chopper

- Operating temperature 80K
- 1.7 µrad stability and repeatability
- 5 msec chopping time
- any position within 8.5 mrad

Technology Developments

Sorption Cooler

METIS

- reversible adsorption and JT expansion
- vibration+maintenance-free operation
- T = 7 40K with <<10 mK/mth stability

Active Cryo-Derotator

- ultra-stable optical derotator
- length ~ 0.5 m
- cryo-compatible (T ~ 70K)
- active control of 1 axis

Technology Developments

Novel Coronagraphs at 3 & 10 μm

METIS

High Performance Metal

- Excellent surface figure & microroughness
- matches CTE of Al alloy with high silicon content to electroless nickel NiP
- Prototype mirror manufactured

- METIS will deliver unique and outstanding science in many areas – from the Solar System to high-z galaxies.
- Arguably the biggest discovery space will be in the areas of exoplanets and protoplanetary disks.
- The METIS project is in great shape: scientifically, technically & financially.