Is a MUSE-like instrument feasible for the E-ELT?

Roland Bacon

CRAL

Shaping E-ELT Science and Instrumentation ESO Munich, Feb 2013

No

Thank you for your attention

Outline

- MUSE main characteristics
- Why an E-ELT large field IFU is desirable?
- Is it feasible and affordable?
- Conclusions

MUSE MAIN CHARACTERISTICS

AOF@UT4 & Galacsi

DSM thin shell:

- 1120 mm diameter
- 2 mm thickness
- 1170 actuators
- 4 Laser guide stars
- 5-10 W

GLAO mode (WFM)

- x 2 energy gain in 0.2x0.2 arcsec²
- LTAO mode (NFM)
- 5% Strehl ratio @ 6500 A

6

IFU x 24

FMA: 4 stack of 12 off axis spherical mirrors 6x2 mm elliptical aperture

IDA: 4 stack of 12 off axis spherical mirrors 33x0.9 mm rectangular aperture

Winlight Optics

WHY AN E-ELT LARGE FIELD IFU IS DESIRABLE?

Wide field IFU or MOS?

3x3 arcmin² UDF

- Object density increase with depth
- A wide field IFU can be more efficient than a MOS

Imaging the Cosmic Web (1)

Imaging the Cosmic Web (2)

- The Lyα faint glow (fluorescence)
 - UV cosmic background ionize intergalactic Hydrogen
 & produce Lyα emission (Hogan & Weymann 1987)
 - Ly α emission produced in dense region of the IGM, e.g filaments
- Lyα Cooling flows
 - Recombination of shock heated gas in massive halos

Imaging the cosmic web (3)

FORS2 deep observations

Rauch et al, 2008 – 92 hours FORS2 long slit observation

Imaging the cosmic web (4)

- Filament size ~1 Mpc, i.e. 2 arcmin @ z=3
 - Wide field IFU required
- SB ~ 10^{-20} ergs/s/cm²/arcsec²
 - E-ELT collecting power required
- Filaments are thin & other sources of Lyα emission
 - Good spatial resolution
- In ~50 hours, a wide field IFU on the E-ELT should image the cosmic web in great detail

IS IT FEASIBLE & AFFORDABLE?

The goal

- 1x1 arcmin²
- 400-1000 (1200) nm, R~2000-5000
- High throughput
- Good spatial resolution
- Very stable

- The problem of Etendue
 - Fast camera (f/1.4)
 - Large number of pixels
 - use on-chip binning?
 - Large number of IFUs

A tentative proto-concept

- Use MUSE IFU type
 - Advanced slicer
 - Spectrograph $(f/2 \rightarrow f/1.4) + VPHG$
 - Detector (CCD)
- Simplify the fore-optics
 - Non contiguous field of view: 30 arcsec² in a 1x1 arcmin²
 - IFUs are located in the (enlarged) focal plane (no field splitter and relay optics)

A few points to be investigated

- A derotator of 1x1 arcmin²
- IFU opto-mechanical design for the noncontiguous solution
- CCD or IR detectors (extension to H band)

MUSE hardware cost

VLT/MUSE & E-ELT/Wide Field IFU

	MUSE/VLT	Wide Field IFU/E-ELT
Field of view	1X1 arcmin²	1x1 arcmin² in 4 exposures of 30x30 arcsec² each
IFUs	24 (f/2 camera)	96 (f/1.4 camera)
Throughput	55%	60%
AO friendly	AOF	GLAO
Volume	1 Nasmyth Platform	?
Weight	7000 Kg	?
Project duration	10 years	10 years
Hardware Cost	8,5 M€	25-30 M€

CONCLUSIONS

- Is it desirable?
 - Yes, unique science case
 - Cosmic web
 - High-z galaxies using lensing cluster (J-P Kneib talk)
 - Resolved stellar population (M. Roth talk)
 - Yes, large FOV maximize science return
 - Yes, use of poor AO time, maximize science return
- Is it feasible?
 - Yes, use most of the techno already developed for MUSE
- Is it easy?
 - No, but nothing will be easy on the E-ELT
- Is it affordable?
 - Yes, 30 M€, only 3% of E-ELT total cost
- Is it unique?
 - Yes, no similar plan so far on other E-ELTs
 - ESO community well prepared with MUSE & HARMONI