Bringing Order to Chaos

RUB

new data-mining techniques for new surveys

Peter-Christian Zinn

Astronomical Institute of Ruhr-University, Bochum, Germany CSIRO Astronomy & Space Science, Sydney, Australia

Why new data handling techniques?

- The next generation of photometric surveys will produce lots of data!
 - In 5 yrs: order 1 billion objects
 - In 15 yrs: order 10 billion objects
- New spectroscopic surveys will more than 10-fold the number of spectra compared to present!
 - 4MOST: order 10 million
 - HEXA: order 100 milio
- Interesing fact: the ratio doesn't dange!
 - Only ~1% of the photometric sources has and will have spectra

Implications for survey science

- There are no spectroscopic redshifts
 - Redshift information must be accessed on other ways → photometric (better: statistical) redshifts
- There are no spectral classifications
 - Classification of an object must be inferred on other ways → Flux ratios or SED-fitting (better: kNN classification) becomes more important
- There are no spectroscopically derived parameters
 - Classic parameters such as metallicity must be derived on other ways → scaling relations (better: kNN regression) must be utilized

QUASAR

Why bother?

- Exact classifications and (at least) coarse redshifts are crucial for a large variety of science cases:
 - Co-evolution of AGN and their hosts
 - Most cosmology stuff
 - The cosmic star formation history
 - Luminosity functions / number counts
 - The radio/FIR correlation

Δo

4

5.7

i*-z*

Fan et al. 2001

Common approaches

- Define plain color criteria
- Model SEDs
- Look for morphology, scaling relations, ...
- PROs:
 - Well-known -> lots of expertise
 - Easy to understand it rhumans dimensional selection criterial
- CONs:
 - Global models -, one number mast to everything
 - Hardly applicable to high a mensional data sets
 - Require massive pre-processing
 - Most criteria physically motivated

Peter-Christian Zinn | Bringing Order to Chaos | 18. October 2012 | Garching, Germany

Our approach: k nearest neighbors

Example 1: kNN redshifts

Redshift estimation for SDSS quasars

Peter-Christian Zinn | Bringing Order to Chaos | 18. October 2012 | Garching, Germany

Example 2: object classification

• SF / AGN separation

- Classical tool: **BPT-diagram** (requires spectroscopy)
- Alternative: MIR color-color selection (not very reliable)
- **SED fitting** (work-intensive)

kNN-based classification of ATLAS test-sample yields combined **false classification rate of 9%**

Smolcic et al. (2008) achieve **contamination rates between 15% - 20%** using a highly sophisticated photometric method

SF:	128 AGN: 116			$S_{4.5}$
by	chance success rate: 0.52459016393	34		- mm
SF-	SF: 122 SF-AGN: 6 AGN-SF: 16	5	AGN-AGN:	100
overall success rate: 0.909836065574				
false SF: 0.0655737704918				og
false AGN: 0.0245901639344				

Classification obstacles

- Astrophysical obstacle:
- At high redshift, AGN activity and star formation are closely linked (e.g. Mullaney et al. 2012, Rovilos et al. 2012, PCZ et al. in prep.) *Economical obstacle:*
- Economical obstacle: cross-matches for the entire electromagnetic spectrum needed Peter-Christian Zinn | Bringing Order to Chaos | 18. October 2012 | Garching, Germany
 11/14

Example 3: metallicity

• Metallicity from L-Z relation

- Spectroscopic input: SDSS metallicities as derived by Brinchman et al. (2004)
- L_r-Z relation calibrated by the 2dF survey (Lamareille et al. 2004) applied to Galactic extinction-corrected fluxes

• Metallicity from kNN regression

- Spectroscopic input: SDSS metallici-ties derived by Brinchman+ (2004)
- kNN regression with respect to the 90 nearest neighbors
- No other assumptions made

Peter-Christian Zinn | Bringing Order to Chaos | 18. October 2012 | Garching, Germany

- No other assumptions made

RUB

Example 4: stock market

Peter-Christian Zinn | Bringing Order to Chaos | 18. October 2012 | Garching, Germany

Summary

- We presented the first results of utilizing **advanced machine**learning techniques to classify/analyze large data sets.
- Dealing with large data sets will become increasingly important due to the enormous amounts of data forthcoming surveys will produce.
- A **k nearest neighbor-based approach was tested** on available data from ATLAS, COSMOS and the SDSS.
- Results for redshifts, object classifications and the regressional computation of astrophysical quantities (e.g. metallicity) all yield promising results.
- Data-mining will already play an important role in currently upcoming projects, e.g. ASKAP/EMU.