Using Galaxy-Galaxy Lensing as a Tool to Correct Finger-of-God

Chiaki Hikage (KMI, Nagoya) in collaboration with Rachel Mandelbaum (Carnegie Melon) Masahiro Takada (IPMU) David Spergel (Princeton)

Large-Scale Structure traced by galaxies

Scientific Goals

- Dark energy
- Modified Gravity
- Neutrino mass
- Primordial Non-Gaussianity

<u>Galaxy redshift surveys</u>

- 2dF, SDSS
- BOSS, WiggleZ, VVDS, Vipers, FMOS
- Subaru, HETDEX, BigBOSS, Euclid, WFIRST

SDSS III BOSS survey(2009-2014)

Goal

distance measurements using BAO with 1% (z=0.35 and 0.6) and 1.5% (z=2.5) precisions

<u>Target</u>

1,500,000 LRGs (0.2<z<0.8) 160,000 QSOs (2.2<z<3) over 10,000 deg² of sky

Instruments SDSS 2.5m telescope at Apache Point observatory (2788m, 1.2"seeing) Camera: 30 2kx2k CCDs with 5 filters (*r*,*i*,*u*,*z*,*g*), 6deg² FOV Spectrographs: 1000 fibers (2" diameter), R~2000, 360-1000nm

Luminous Red Galaxies (LRGs)

Main target of SDSS, BOSS - Luminous: wide coverage of redshift range

 Red: old stellar populations host subhalos are massive

Finger-of-God: Nonlinear Redshift-Space Distortion

Peculiar motions of galaxies distort observed galaxy distribution. FoG effect is a major systematic uncertainty in knowing matter distribution from observed galaxy distribution

2-Point Correlation Function VVDS-Wide Survey (6000 gals, 0.6<z<1.2, 4deg²)

What produces FoG effect ?

Real Space Redshift Space

<u>Central LRGs</u> locate on the potential minimum and then their internal motion within halos should be small

Satellite (off-centered) LRGs can have large internal motion (e.g., recent merger)

FoG effect is sensitive to satellite fraction of LRGs

LRGs locate at halo mass center ? Offset from X-ray peak

Comparison of LRG positions with X-ray peaks using 47 X-ray selected clusters at 0.2<z<0.6 (Ho et al. 2009)

Most massive clusters $M_{200}=7.7 \times 10^{14} h^{-1} M_{\odot}$, z=0.353

Offset from lensing mass center

Weak lensing analysis of 25 X-ray luminous clusters (Oguri et al. 2010)

Lensing also suggests a off-centered component from mass center

Off-centering effect on LRG-galaxy lensing

Smearing due to off-centered LRGs

LRG-galaxy lensing provides the off-centering profile information

Modeling of LRG-galaxy lensing

Projected mass profile around LRGs as a function of projected radius R[Mpc/h]

$$\Delta\Sigma(R) \equiv \int \frac{k dk}{2\pi} C_{\Sigma g}(k) J_2(kR), \qquad C_{\Sigma g}(k) = C_{\Sigma g}^{1h}(k) + C_{\Sigma g}^{2h}(k).$$
Single halo mass approximation
$$C_{\Sigma g}^{1h}(k) \simeq \left[\bar{M}\tilde{u}_{\rm NFW}(k;\bar{M},z_{\rm LRG})\tilde{p}_{\rm off}(k;\bar{M}) + m_{\rm sh,LRG}\right]$$

$$C_{\Sigma g}^{2h}(k) \simeq \left[\bar{M}\tilde{p}_{\rm m0}P_m^L(k;z)\right], \qquad \text{sub-halo term}$$
bias
$$LRG \text{ distribution within halos (Center + Gaussian Offset})$$

$$\tilde{p}_{\rm off}(k) \longrightarrow q_{\rm cen} + (1 - q_{\rm cen}) \exp[-(kR_{\rm off})^2]$$

Fraction of central LRGs

Gaussian offset scale

Fitting result of LRG-Galaxy Lensing

SDSS DR7 LRG catalog (Kazin et al. 2010) 92046 LRGs (-23.2<M_g<-21.2) 0.16<z<0.47, 1.58(Gpc/h)³

Projected mass density

$$\Delta \Sigma(R) = \frac{\sum_{ls} w_{ls} e_t^{(ls)}(R) \Sigma_{\rm crit}(z_l, z_s)}{2\mathcal{R} \sum_{rs} w_{rs}}$$

Inverse variance weight

 $w_{ls} = \frac{1}{\Sigma_{\rm crit}^2 (\sigma_s^2 + \sigma_{SN}^2)}$

(Mandelbaum et al. 2012)

1.2 galaxies per arcmin² Z_{photo} > Z_{LRG}

2. Cross Correlation of LRGs with photo-z red galaxies

Finger-of-God for SDSS LRGs

 $\left[q_{\mathrm{cen}} + (1 - q_{\mathrm{cen}})\right] \sqrt{F(k,\mu)}$

FoG suppression of all LRGs is comparable to the freestreaming damping due to neutrinos with m_{v,tot}=0.104eV

SUbaru Measurement of Images and REdshift (SUMIRE)

Joint Mission of Imaging and Redshift surveys using 8.2m Subaru Telescope

Hyper-Suprime Cam (HSC)

- 1400 deg² sky (overlap w ACT, BOSS)
- 30gals/arcmin², z_{mean}=1, i~26(5σ)
- 1.5 deg FoV, grizy band, 0.16"pix,
- 2013-2017

Prime Focus Spectrograph (PFS)

- 1400 deg² of sky (overlap with HSC)
- Redshift of LRGs + OII emitters at 0.8<z<2.4 (9.3 Gpc/h³ comoving vol)
- 2400 fibers, 380--1300nm
- 2018-2023 (planed)

Mauna Kea, Hawaii, 4139m alt., 0.6-0.7" seeing

Euclid

- ESA M-class mission
- Dark energy probe via weak lensing & BAO
- Imaging 20,000 deg² sky, 40gals/arcmin²
- Spectrum of 70M Hα emitters at 0.5<z<2
- 1.2m telescope
- FOV 0.5deg², rizYJH band (550--1800nm), 0.2-0.3" pixel size
- Spectrograph: 1-2µm, R=500
- 2020-2025 (planed)

Impact on Growth Rate Measurement

Lensing calibration of FoG effect improves the accuracy of growth rate measurement by nearly twice

Neutrino mass fraction f_v and dark energy parameter w₀

LRG lensing also improve measurements of f_v and w_0 upto 25%

		Marginalized Error and Bias of Neutrino Mass $(f_{ u})$						
	_	w/o offset				with offset		
Survey	k_{\max}	$\sigma(f_ u)$	δf_{ν} (Gauss)	$\delta f_{\nu}(ext{Lorentz})$	$\sigma(f_ u)$	δf_{ν} (Gauss)	δf_{ν} (Lorentz)	
BOSS	0.1h/Mpc	0.0075	0.0001	-0.0002	0.0056(25%)	-0.0010	0.0016	
	0.2h/Mpc	0.0048	0.0025	-0.0034	0.0044(9%)	-0.0014	0.0021	
PFS	0.1h/Mpc	0.0057	0.0006	-0.0011	0.0051 <mark>(11%)</mark>	-0.0003	0.0005	
	0.2h/Mpc	0.0043	0.0028	-0.0048	0.0042(2%)	-0.0015	0.0027	
					$f_v = 0.01 \text{ correct}$	esponds to m	$v_{tot} = 0.104 eV$	
		Marginalized Error and Bias of w_0						
	_	w/o offset				with offset		
Survey	k_{\max}	$\sigma(w_0)$	δw_0 (Gauss)	δw_0 (Lorentz)	$\sigma(w_0)$	δw_0 (Gauss)	δw_0 (Lorentz)	
BOSS	0.1h/Mpc	0.035	0	0	0.028(22%)	-0.005	0.008	
	0.2h/Mpc	0.025	0.009	-0.012	0.021(14%)	-0.014	0.021	
PFS	0.1h/Mpc	0.033	0.001	-0.003	0.030 (9%)	-0.003	0.005	
	0.2h/Mpc	0.027	0.009	-0.016	0.026(4%)	0	0	

error improvement

Summary

- FoG effect of satellite LRGs challenges precise measurements of halo (matter) power spectrum especially at small scale
- Galaxy lensing and cross-correlation with photo-z galaxies around LRGs are also sensitive to their off-centering properties.
- We give limits on the satellite fraction of SDSS LRGs and their typical offset scale : q_{cen}=80% with R_{off}=0.2Mpc/h (Single LRGs); q_{cen}=60% with R_{off}=0.4Mpc/h (Multiple LRGs)
- Estimated FoG effect of all LRGs reach 5% at k<0.2h/Mpc and 10% at 0.3h/Mpc, which are comparable to the neutrino damping with m=0.1eV
- Our method reduces the uncertainty of growth rate measurement and neutrino mass for current/upcoming imaging and spectroscopic joint surveys