Blue Stragglers in Globular Clusters: Observations, Statistics, Physics

Cool R Team NASA and the Hubble Heritage

Christian Knigge

Outline

- Physics
 - Blue Straggler Formation Channels
- Statistics
 - N_{BSS} vs ???: the Search for the "Smoking Gun" Correlation

• Observations

- Radial Trends
- Double Sequences
- ...

• Summary

Straw-Man Models for BSS Formation

- Stellar Collisions
 - single-single

- Binary Evolution
 - mass-transfer...

Christian Knigge

Digression I: All Theory is Grey Binary Coalescence in Practice!

- Astronomers in Japan and China discover Nova Sco 2008
- Spectroscopy (Mason et al. 2010):
 - not a normal classical nova
 - probably a "red nova" (like V838 Mon)
- Tylenda et al. (2011) realize the object is included in OGLE footprint!

- Amazing outburst light curve

 Before the outburst, the system was a *P*_{orb} ≈ 1.4 *d* W-UMa contact binary!

 Dramatic period decrease in the lead-up to outburst → coalescence!

- Still detected post-outburst
 - Incredible chance to witness a binary
 moreor and its aftermath in real time!

Christian Knigge

Back to our original programming...

Less Straw, More Model...

- Collisions
 - What about other encounters?
 - Binary-Single
 - Binary-Binary
 - (Triples? Quads?)

- Binary Evolution
 - What about binaries formed/altered in dynamical encounters?

Christian Knigge

The Utility of Straw-Man Models

• No!

If <u>dynamical encounters</u> dominate BSS production, expect

$$N_{BSS} \propto \Gamma_{coll,1+1}$$

regardless of the multiplicity of the objects involved

→ for example,
$$\Gamma_{\text{coll},1+2} \propto f_b \left(\frac{a_{bin}}{R_*}\right) P_{\text{coll},1+2} \Gamma_{coll,1+1}$$

If <u>binary evolution</u> (mass transfer/coalescence) dominates, expect

$$N_{BSS} \propto N_{bin}$$

Christian Knigge

One Last Thing...

• Two different conventions are used in statistical studies of BSSs

BSS <u>numbers</u>

- N_{BSS}, corrected for / normalized to the observed fraction of the relevant area
- BSS <u>frequencies</u>
 - N_{BSS} / N_{ref}, where N_{ref} is the number of some reference population (e.g. HB stars) in the same field of view
- The difference matters!
 - The scalings shown previously only hold for N_{BSS} !
 - In the <u>collision</u> scenario, BSS frequencies should scale with specific encounter rate (Γ/M_{tot})
 - In the hinary scenario RSS frequencies should scale with hinary fraction

The Search for the Smoking Gun Correlation

- Piotto et al. (2004) presented and analysed the first reasonably complete BSS catalogue, based on the HST/WFPC2 survey of 74 GCs (Piotto et al. 2002)
- Surprising results!
 - <u>No</u> correlation between BSS frequency and collision rate!
 - <u>Anti-correlation between BSS frequency and cluster luminosity/mass</u>

Christian Knigge

The Search for the Smoking Gun Correlation

- But remember the issue with *<u>numbers</u>* vs *frequencies*!
 - Is the expected result somehow hidden in the data?
- Here are the same results shown in terms of BSS *<u>numbers</u>*

- Still <u>no</u> correlation with collision rate
- Maybe a mild (sub-linear) *positive* correlation with cluster mass?

Christian Knigge

Digression II: Does this stuff ever actually work?

Yes, it does!

- X-ray sources!
 - N_X scales with Γ_{coll}
 - N_{LMXB} scales (mostly) with Γ_{coll}
 - N_{CV} scales (mostly) with Γ_{coll}
 - At low Γ_{cdl} both LMXBs and CVs may scale with M_{tot}

Christian Knigge

A Different Approach: Radial Distributions

• Radial distributions of BSS *frequency* are <u>usually</u> bimodal (e.g. Ferraro et al. 1997, 2004, 2006a; Sabbi et al. 2004; Warren et al. 2006; Lanzoni et al. 2007ab...)

Exception 1: Unimodal

M79 (Lanzoni et al. 2007c)

M75 (Contreras Ramos et al. 2012)

Exception 2: Flat

ω Cen (Ferraro et al. 2006b) NGC 2419 (Dalessandro et al. 2008)

Christian Knigge

Modelling Radial BSS Distributions

Mapelli et al. (2004, 2006)

- Assumptions
 - Static GC background
 - COLL-BSS form inside core
 - BIN-BSS form outside core
 - BIN-BSS uniformly distributed
- Results (for bimodal GCs)

Christian Knigge

Radial Distributions: Issues, Questions, Caveats

- <u>Why</u> is the BSS distribution bimodal?
 - BIN-BSS progenitors experience dynamical friction
 - Those born inside $R(t_{DF} = t_{GC})$ have sunk to the core
 - Those born outside $R(t_{DF} = t_{GC})$ have not yet moved

→ "zone of avoidance"

 $R_{min} \sim R(t_{DF} = t_{GC})$

→ Pure BIN-BSS populations should still be bimodall

- So why the need for COLL-BSS at all?
 - Not enough BIN-BSS are born inside *R_{min}* by assumption
 - Centrally-peaked BIN-BSS birth distribution may also match data (Mapelli et al. 2004)
- Very different scenario from Davies et al. (2004)!
 - Both favour a combination of BIN-BSS & COLL-BSS
 - Davies et al. (2004): different channels dominate in different GCs
 - Mapelli et al. (2006): different channels dominate in different locations within a given GC

The Search for the Smoking Gun Correlation II: An Obvious Idea

- Does the lack of global correlations arise because <u>both</u> channels contribute?
- Well, if collisions dominate anywhere, it's in GC cores!

→ Try correlating

(Leigh, Sills & Knigge 2007; Knigge, Leigh & Sills 2009)

• !&%\$£!!!!

The Search for the Smoking Gun Correlation II: A Last-Ditch Attempt

May as well also try binaries

Since *f_{bin,core}* was unavailable for most GCs in 2009, try

The N_{BSS,core} **vs** M_{core} **correlation**

- Hints! (Sollima et al. 2007/8; Milone et al. 2008)

So, it's all binaries then? But what about...

- The double BSS sequence in M30 (Ferraro et al. 2009)
 - Interpreted as:
 - Blue sequence: collisions
 - Red sequence: binaries
 - Why the clean separation?
 - COLL-BSS formed in a short burst during recent core collapse
 - All share the same evolutionary stage
 - Both seqs present in most GCs?
 - Just happen to be distinct in M30...
 - However, BSS sample includes
 - 3 W UMa contact binaries
 - 2 other variables/binaries
 - One of each on COLL-BSS sequence

Christian Knigge

So, it's all binaries then? But what about...

- Theoretical expectations
 - Physical collisions <u>must</u> occur at something like the predicted rate
 - Simulations suggest both channels can contribute (Hypki & Giersz 2012)
 - (But remember: "collision → BSS" is just an <u>assumption</u>)

Christian Knigge

The Search for the Smoking Gun Correlation III: XXXXXX binary Once more, with feeling

- A New Resource:
 - The ACS Survey of Galactic GCs (Sarajedini et al. 2007)
 - Photometric binary fractions for 56 GCs (Milone et al. 2012)
- Core binary fractions
 - Correlate weakly with Γ_{coll}
 - Correlate more strongly with M_V , so **anti-correlate strongly with** M_{tot}
 - Correlate strongly with F_{BSS}
- Promising for binary scenario?

University of Southampton

School of Physics & Astronoy

The Search for the Smoking Gun Correlation III:

Once more, with binary fractions

Christian Knigge

The Search for the Smoking Gun Correlation III: A Thought Experiment...

 Suppose BSS are exclusively formed from (primordial) binaries:

 $N_{BSS,core} \propto N_{bin,core}$ with just some modest intrinsic scatter

- We know that the observed f_{bin,core} anticorrelates pretty well with M_{core} and M_{tot}
- What if the true correlation is even stronger?
 → Then scatter in *f_{bin,core}* vs *M_{core}* is mostly observational (*σ_{obs}*), not intrinsic (*σ_{int}*)
- But if $\sigma_{obs} > \sigma_{int}$, M_{core} is a better tracer of the true $f_{bin,core}$ than the measured fractions!
- And N_{BSS,core} would track M_{core} more closely than the estimated N_{bin,core}... as observed!
- So the binary scenario <u>might</u> work…

... if binary fractions are <u>extremely</u> closely coupled to core/total cluster masses (Leigh et al. 2012)

Christian Knigge

Summary

- Collisions, binary mass transfer and mergers must all happen in GCs!
 - Mass transfer <u>definitely</u> produces BSS
 - Mergers can be survived (V1309 Sco) and <u>probably</u> produce BSS
 - Collisions <u>may</u> produce BSS (if enough AM can be lost)
- There is no clean correlation between N_{BSS} and Γ_{n+m} , even in GC cores
- There is a strong, sub-linear correlation with M_{core} / M_{tot}
- There is a strong correlation with f_{bin}

\rightarrow A binary origin for BSS, even in GC cores?

(since no correlation with Γ_{coll} , have these binaries not even been <u>affected</u> by encounters?)

- But we do not get the best (and linear) correlation with $N_{bin} = f_{bin} M_{tot}$!
 - Is M_{tot} actually a better trace of f_{bin} than observationally measured binary fractions?
- What about other evidence for COLL-BSS channel?
 - Radial distributions? Double sequences?

There is no smoking gun yet!

Now with free bonus slides...

But let's remember that...

- Other factors may mask/alter the naïve straw man scalings
- N/M_{tot} and Γ are <u>always</u> correlated themselves
 - Encounter rates always scale with the available number of objects

 Even if all BSS form via binary evolution, expect a scaling with encounter rate if the requisite binaries are dynamically formed/altered

A Possible Interpretation?

- In high-mass / high-collision-rate GCs, massive stars exchange into binaries early
 - By today, most suitable proto-BSS binaries have been "used up"
- In low-mass / low-collision-rate GCs, collisions just don't produce enough BSS
 - So scaling with M_V is mild or absent because
 - → Binaries dominate in low-mass / low-collision-rate GCs
 - → Collisions dominate in high-mass / high-collision-rate GCs

Christian Knigge

Predictions & Problems

- Should still see a linear scaling with Γ_{coll} at the high- Γ_{coll} end
 - Not really observed
- In this picture, even binary BSSs require dynamical encounters, so actually still expect a linear scaling with Γ_{coll} (via Γ_{1+2})
 - Not observed
- "Binary burning" scenario is speculative
 - Ignores late supply of binaries from halo to core
 - Ignores changing environment as cluster evolves
 - Specific implementation assumes persistent availability of stars with $M > M_{TO}$
 - Should high-collision-rate GCs should have lower core binary fractions?
 - Not observed (see later)

What else can we still do?

- Spectroscopy
 - Abundances
 - Are MT-BSS CO-depleted?
 - Rotation
 - Is the $v \sin i$ distribution bimodal?
 - Kinematics
 - Do COLL-BSS get a measurable kick?

Binarity

- Radial velocity variations?
- Photometric variability
 - Eclipses, W UMa, ...
- Direct detection of companions
 - UV, X-ray...
- Pulsations
 - Some BSS are SX Phe pulsators
 - Mode analysis can yield masses!

Christian Knigge