The Impact of Ram Pressure Stripping on Star Formation both Inside and Outside of Galaxies

Stephanie Tonnesen Princeton University ESO Garching July 1, 2011

Environment & galaxy morphology

Density-Morphology relation (Oemler 1974, Dressler 1976)

Butcher-Oemler effect Butcher & Oemler 1978)

Evolution of Spirals to S0s (Dressler et al. 1997)

Galaxy Cluster MS1054-03

APOD July 22, 1999 HST · WFPC PRC99-28 • STScI OPO • P. van Dokkum (University of Groningen), ESA and NASA

How do you make an S0 from a Spiral?

1) Redden the spiral

Remove gas (passive spirals e.g. Moran et al. 2007;
Poggianti et al. 1999)

- 2) Smooth out the spiral arms
 - > Remove gas (Bekki et al. 2002 find spiral arms lost3.5 Gyr after gas removal)
- 3) Increase the Bulge/Disk ratio
 - > Dim the disk
 - > Grow the bulge

A history of discussion, e.g.: Solanes et al. (1989); Burstein et al. (2005); Christlein & Zabludoff (2004)

Ram Pressure Stripping

 $P = \rho V^2$ (Gunn and Gott 1972)

Directly affects only gas

Star Formation in Stripped Tails

Zooming in to Highly Resolved Simulations of Ram Pressure Stripping

 $P_{ram} = 6.4 \times 10^{-12} \, dyn \, cm^{-2}$ n = 3 x 10⁻⁴ cm⁻³ v = 1413 km s⁻¹

The ram pressure experienced at about the virial radius of a cluster with $M = 6 \times 10^{14} M_{sun}$ (Tonnesen, Bryan & van Gorkom 2007)

Star Formation in the Disk

Kennicutt-Schmidt Law

Stellar Mass in the Disk and Bulge Does RPS grow the bul ge?

The Stellar Tail

Does this add to the ICL?

Less than 1% of the mass of stripped gas turns into stars

The stellar mass formed in the tail is less than 10% of the mass of new stars in the disk

Conclusions

- RPS does not increase the total SFR inside a galaxy, either through the increase of the surrounding ICM pressure or through a shock
- RPS does not affect the relationship between $\Sigma_{\rm gas}$ and $\Sigma_{\rm SFR}$
- RPS increased the bulge stellar mass relative to a galaxy with no ICM wind
- RPS does add a small and seemingly insignificant amount of stellar mass to the ICL

The Local Schmidt Law

Whether or not wind is included, the galaxies fall along the same relationship between $\Sigma_{\rm SFR}$ and $\Sigma_{\rm gas}$.

The $\Sigma_{\rm SFR}$ flattens at the same $\Sigma_{\rm gas}$ observationally found by Leroy+ (2008) (THINGS)

Clouds are marginally resolved and we do see mixing with the ICM.

Tonnesen

vs Kapferer

AMR cells in disk~ $5x10^7$ Mass refinement: 4900 M_{sun} cooling: 300 K T_{SF}: 1.1x10⁴ K ρ_{SF} : 3.85 x 10⁻²⁵ g cm⁻³ SPH particles in disk: $2x10^5$ particle Mass: $3.4x10^4 M_{sun}$ cooling: $10^4 K$ T_{sF} : $10^6 K$ ρ_{sF} : $\sim 7 \times 10^{-26} \text{ g cm}^{-3}$ (?)

