The Coma 3-degree Survey Stripping and Quenching of Infalling Dwarfs Russell Smith

Durham University

You all know it already!

2) UV tails & trails: Ongoing stripping of star-forming galaxies

3) Asorption-line spectroscopy: Recent quenching of outer dwarfs

4) Enviro-history of cluster members in models.

ESO Conference // Virgo, Fornax, Coma et al.: Stellar systems in high-density environments // Jun 2011

The Coma 3-degree Survey

Associated with the HST/ACS Coma Treasury Survey (Carter et al. 2008), but much wider area, to beyond virial radius of cluster.

* Data:

* Comprehensive spectroscopy from MMT/Hectospec + SDSS:

- "fast" redshift survey
- "deep" stellar pops spectra

* Multiwavelength imaging including

UV (GALEX)

Optical (CFHT), NIR (UKIRT +CFHT), FIR (Herschel), Radio (VLA), Halpha (INT+Subaru),

The Coma 3-degree Survey

Associated with the HST/ACS Coma Treasury Survey (Carter et al. 2008), but much wider area, to beyond virial radius of cluster.

* Data:

* Comprehensive spectroscopy from MMT/Hectospec + SDSS:

- "fast" redshift survey
- "deep" stellar pops spectra

* Multiwavelength imaging including

UV (GALEX)

Optical (CFHT), NIR (UKIRT +CFHT), FIR (Herschel), Radio (VLA), Halpha (INT+Subaru),

The Coma 3-degree Survey

Associated with the HST/ACS Coma Treasury Survey (Carter et al. 2008), but much wider area, to beyond virial radius of cluster.

* Data:

* Comprehensive spectroscopy from MMT/Hectospec + SDSS:

- "fast" redshift survey
- "deep" stellar pops spectra

* Multiwavelength imaging including

UV (GALEX)

Optical (CFHT), NIR (UKIRT +CFHT), FIR (Herschel), Radio (VLA), Halpha (INT+Subaru),

Two programmes observed in parallel extending to 2.5 Mpc radius ~ R_{vir}

I. A fast **redshift survey** of ~7,000 galaxies with r<20.5 to establish membership, measure LF, GSMF, etc. -> Marzke et al. (in prep).

II. Repeated observations to yield high-S/N spectra of "bright" dwarfs (r~17) for linestrengths -> stellar population information (RJS et al. 2009)

~160 "dwarf" galaxies (2-4 mag fainter than M*). Integration ~4-10 hours per galaxy, S/N ~ 50 per Angstrom.

SDSS DR7 spectra re-analysed identically to ensure consistent treatment (Price et al. 2010).

Combined sample: ~430 galaxies.

UV imaging

15 ksec GALEX Cycle 5 observation of Coma core.

Combined with 20 ksec Cycle 2 observation of outskirts field to SW by Hammer et al. (2010 & LF paper submitted).

UV Tails & Trails: ongoing stripping

... but temporarily perhaps enhance SF in tails of stripped material.

Gas-Stripping Events (GSE)

NUV - i colour-magnitude relation for **590 confirmed members** within two deep (>15ksec) Coma GALEX pointings, down to ~M*+4.5.

All 80 blue (NUV-i<4, M_i<-17) members examined for evidence of UV tails/trails: SF in stripped gas.

Find 13 cases - not all "spectacular"!

RJS et al. 2010; Yagi et al. 2010

Gas-Stripping Eventer(GSE) statistics

Δ_o $\Delta \Delta_{0\Delta}$ 0 **4**2 ΔΟ GSEs much more 0 10 centrally concentrated than the non-GSE ω galaxies with similar ဖ colour. 4 2 0 500 0 cz [km/s] GSE galaxies are distributed similarly to the *red* cluster members.

Coma 3-degree Survey

cz [km/s]

D [kpc]

Gas-Stripping Eventer(GSE) statistics

△ △ △ △
GSES much more
centrally concentrated
than the non-GSE
galaxies with similar
celour.

Coma 3-degree Survey

cz [km/s]

D [kpc]

Gas-Stripping Event (GSE) statistics

Within 1 Mpc, **30-40%** of blue Coma members show evidence for ongoing gaseous stripping.

(Beyond 1 Mpc ~**0%**)

Coma 3-degree Survey

Gas-Stripping Event (GSE) statistics

Within 1 Mpc, **30-40%** of blue Coma members show evidence for ongoing gaseous stripping.

(Beyond 1 Mpc ~**0%**)

Coma 3-degree Survey

Gas-Stripping Event (GSE) statistics

Within 1 Mpc, **30-40%** of blue Coma members show evidence for ongoing gaseous stripping.

(Beyond 1 Mpc ~**0%**)

Coma 3-degree Survey

11 / 13 tails directed away from cluster centre, i.e. stripping on approach to cluster.

-> Stripping occurs on **first** passage through cluster centre, and is triggered at ~1Mpc radius.

Enviro-history of model cluster members

We see trends with **projected** radius, well within the virial radius.

Is this expected?

Aren't clusters well-mixed at such radii?

Shouldn't projection weaken the trends substantially?

Address this with orbital history of ~10,000 M_{stel} > $10^9 M_{sun}$ members of the four most massive clusters (~10¹⁵ Msun) in Millenium Simulation.

Ignore semi-analytic predicted SFH!

Track key "life events" of each simulated galaxy...

... and compare to projected location at $z\sim 0$.

Key events in life of a cluster galaxy?

Comes within 1Mpc of eventual halocentral galaxy

Becomes a member of a

10¹³ M_{sun} group,
10¹⁴ M_{sun} "Virgo",
10¹⁵ M_{sun} "Coma"

Key events in life of a cluster galaxy?

Can match fraction of GSEs, and low incidence of "outgoing" events, by assuming a dumb toy model where galaxies:

1) start to be stripped when they *first* come within 1Mpc,

2) remain visible for 500 Myr after this point

3) become "red" thereafter

RJS et al. 2010

RJS et al., in prep

SSP-equivalent ages from absorption line analyses.

Low-σ galaxies are younger on average (Caldwell et al. 2003; Nelan, RJS et al. 2005; etc)

What about environment?

Earlier claims of steep environmental trends in Coma-SW dwarfs, e.g. Carter et al. (2002).

Contrasts with much weaker effect in giants e.g. NFPS (RJS et al. 2006)

Contours of log(Age)

RJS et al., in prep

Contours of log(Age)

RJS et al., in prep

Contours of log(Age)

RJS et al., in prep

Age-radius trend: universal, not localised

Residuals from Age-Luminosity relation

Coma 3-degree Survey

South-West of Coma is "special": ongoing merger of NGC 4839 group.

BUT: outer galaxies are younger than those in core at all azimuths.

It is the *central* region that is "unusual", not the South-West!

T14

Key events in life of a cluster galaxy?

Time since incorporated into 10¹⁴ M_{sun} halo

Time since incorporated into 10¹³ M_{sun} halo

Projected distance [Mpc]

Galaxies observed projected nearer cluster centre became members of clusters / groups earlier than those observed further out...

Key events in life of a cluster galaxy?

Time since incorporated into 10¹⁴ M_{sun} halo

Time since incorporated into 10¹³ M_{sun} halo

Projected distance [Mpc]

Projected distance [Mpc]

Galaxies observed projected nearer cluster centre became members of clusters / groups earlier than those observed further out...

Tthresh

Time since coming within 1Mpc of progenitor of eventual "BCG"

Projected distance [Mpc]

... and came within a given "threshold" radius earlier.

Simplistically, if SF "quenching" accompanies any of these events, we could predict age-radius trend...

Models: $\Delta \log(T_{M14}, T_{M13}, T_{thresh}) \approx -0.2 R_{proj} / Mpc$

Models: $\Delta \log(T_{M14}, T_{M13}, T_{thresh}) \approx -0.2 R_{proj} / Mpc$

Data: $\Delta \log(T_{SSP}) \approx -0.13 \pm 0.05 R_{proj}$ / Mpc (dwarfs)

Data: $\Delta \log(T_{SSP}) \approx -0.13 \pm 0.05 R_{proj}$ / Mpc (dwarfs)

Or: $\Delta \log(T_{Quench}) \approx -0.18 \pm 0.05 R_{proj}$ / Mpc

Models: $\Delta \log(T_{M14}, T_{M13}, T_{thresh}) \approx -0.2 R_{proj} / Mpc$

Data: $\Delta \log(T_{SSP}) \approx -0.13 \pm 0.05 R_{proj}$ / Mpc (dwarfs)

Or: $\Delta \log(T_{Quench}) \approx -0.18 \pm 0.05 R_{proj}$ / Mpc

Projected gradient of "key-event-times" is **sufficient to explain** observed age-radius trend (though need not **be** the sole explanation!)

Residual of log(Age) vs luminosity for all

Info(plot) Info(word)

~ 3

log

