A Panoramic View of Globular Cluster Systems in the Virgo and Coma Clusters

Eric Peng Peking University Kavli Institute for Astronomy and Astrophysics

Globular Cluster Systems

The Properties of Globular Cluster Systems

Globular clusters are predominantly old
 8 Gyr) and metal-poor

• Globular cluster color distributions in massive galaxies are often bimodal, unlike underlying field star metallicity distributions

Is color bimodality metallicity bimodality?
 See poster by Chies-Santos.

• Metallicity distributions of GC and field stars do not match.

The Properties of Globular Cluster Systems

Specific Frequency: number of GCs normalized to M_V =-15 $S_N = N_{GC} \ 10^{0.4} (M_V^{+15})$

Puzzle:

Globular cluster formation efficiency is not constant across galaxy mass

Peng et al. (2008)

How does GC fraction behave across galaxy mass?

• Narrow range of S_N at

• High S_N values for both

giants and dwarfs

intermediate L

Peng et al. (2008)

Globular Clusters in dEs: The Role of Environment

• dEs with high GC fractions are within $D_p < 1$ Mpc

• dEs within 100 kpc, stripped of GCs

Dwarfs only: M_z > -19
S_N vs clustercentric distance

The Millennium Simulation: Early-type cluster dwarfs

Oldest dwarfs are at cluster center and formed GCs at high efficiency because low mass halos in denser environments collapse sooner and smaller.

The Evolution of Massive Galaxies

Simulations predict that Brightest Cluster Galaxies continue to grow in mass through dry mergers through z=0

BCG mass predicted to increase by a factor of 3-4 from z=1 to present

DeLucia & Blaizot (2007)

The Evolution of Massive Galaxies

Observations show little mass evolution in BCGs with redshift

Observed masses of BCGs show only weak dependence on cluster mass

• In massive clusters, N-body simulations predict that "intracluster" light dominates the light of the BCG!

• Prediction: Strong correlation between ICL fraction and cluster mass

Purcell, Bullock & Zetner (2007)

The Evolution of Massive Galaxies

Could intracluster light be the missing component?

ICL is notoriously difficult to observe

- Low surface brightness
- PN/Ly-alpha galaxy confusion

Intracluster Globular Clusters (IGCs) should accompany ICL, and can be easier to see

ICL, IGCs, and the Coma Cluster

- Nearest rich, dense cluster environment (100 Mpc)
- Previous evidence for intracluster light
- cD galaxy, NGC 4874

The HST/ACS Coma Treasury Survey

Carter et al (2008)

Can still do interesting GC and galaxy science!

Globular clusters easily detected!

ACS Coma Treasury Survey

GC spatial distribution

GC spatial distribution in cluster core

Coma core GC distribution

- Spatial structure in GCs
- Intergalactic or just galactic?
- Model GC systems of Coma galaxies
- Statistically subtract from observations
- Mask aggressively

Radial Distribution of GCs

~2500 disrupted dEs at Mv=-16

~70% of GCs in N4874+IGC system are IGCs, ~30-45% of GCs in the core are IGCs Consistent with ICL measurements (Gonzalez et al) and simulations (Purcell et al)

GC Color Distributions

- Distribution of all GCs (I<25) show typical bimodality
- GCs outside of 130 kpc (IGCs) dominated by blue GCs, ratio 4:1
- GCs within 50 kpc not very bimodal, show equal numbers of red and blue GCs.

IGCs in the Virgo Cluster?

ICL observations

- LSB light (Mihos)
- Planetary nebulae (Arnaboldi, Okamura, Feldmeier)

 Best galaxy cluster for GC observations

IGCs in the Virgo Cluster?

Reported detection of IGCs in Virgo using SDSS (g~22)

Lee, Park & Hwang 2011

THE NEXT GENERATION VIRGO CLUSTER SURVEY

- CFHT Large Program (2009-2012)
- 104 sq. deg in ugriz u*g'~26, r'i'z'~25
- •
- PI: L. Ferarrese
- Galaxies, globular clusters, foreground halo, background clusters

Nelson Caldwell Patrick Côté Jean-Charles Cuillandre Patrick Durrell Laura Ferrarese Stephen Gwyn Andrés Jordán Chengze Liu Yang-Shyang Li Lauren MacArthur Alan McConnachie

Globular cluster selection

Virgo globular cluster spatial distribution

Virgo globular cluster spatial distribution

Virgo globular cluster spatial distribution

Can we estimate the IGC fraction in Virgo?

Virgo and the Galactic Foreground

V. Belokurov

Virgo and the Galactic Foreground

Preliminary IGC fraction ranges from ~0-40% depending on chosen background region.

Need careful treatment of Galactic foreground.

Resolving Virgo GCs in the NGVS

Overlap regions

$r_{\rm h}$ in g band

$r_{\rm h}$ in *i* band

Globular Cluster Systems

Misgeld & Hilker (2011)

Summary

- 1. Panoramic observations of nearby galaxy clusters provide a new view on GCs and the intracluster stellar component, showing history of intense formation and interaction.
- 2. dEs in dense environments show enhanced GC formation, contribute GCs to larger halos.
- A large population of intergalactic GCs (~47,000) in Coma core. The ratio of IGC component to total central system (N4874+IGC) ~70% within ~0.5 Mpc. IGC fraction of all GCs is ~30-45%. Consistent with simulations of ICL production through dry merging and stripping of satellite galaxies.
- 4. IGCs are dominated by blue/metal-poor GCs, with a ratio 2:1.
- 5. Virgo population of IGCs is now spectroscopically confirmed. Total fraction still uncertain, but likely has a lower fraction than in Coma.
- 6. Ability to resolve systems with r_h>5-10 pc over the entire Virgo cluster will be uniquely powerful for some time.

IAU INTERNATIONAL ASTRONOMICAL UNION

Home | About IAU | Astronomy for the Public | Member Directory | Site Map | Contact Us | Login

Home » Science » News » List of Symposia selected for 2012

List of Symposia selected for 2012

3 June 2011

1) Symposia to be held during the General Assembly (Beijing):

The Executive Committee and Division Presidents have exceptionally selected 8 Symposia (instead of the usual 6).

- IAUS 288 Astrophysics from Antarctica Contact: Michael Burton, Australia m.burton@unsw.edu.au
- IAUS 289 Advancing the physics of cosmic distances Contact: Richard de Grijs, China grijs@kiaa.pku.edu.cn
- IAUS 290 Feeding compact objects: Accretion on all scales Contact: Zhang Chengmin, China zhangcm@bao.ac.cn
- IAUS 291 Neutron stars and pulsars: Challenges and opportunities after 80 Years Contact: Richard Manchester, Australia dick.manchester@csiro.au
- IAUS 292 Molecular Gas, Dust, and Star Formation in Galaxies Contact: Martin Bureau, UK bureau@astro.ox.ac.uk
- IAUS 293 Formation, detection, and characterization of extrasolar habitable planets Contact: Nader Highighipour, USA
 - nader@ifa.hawaii.edu
- IAUS 294 Solar and astrophysical dynamos and magnetic activity Contact: Alexander Kosovichev, USA
- IAUS 295 The intriguing life of massive galaxies Contact: Daniel Thomas, UK daniel.thomas@port.ac.uk

SCIENCE

News

- Scientific Dates & Deadlines
- Scientific Bodies
- Scientific Meetings
- Publications

EDUCATION AND CAPACITY BUILDING

- Commission 46
 - **Co-Sponsored Meetings**
- Strategic Plan for Astronomy Development Office for Astronomy Development

GRANTS & PRIZES

- IAU Grants
- IAU & the Peter and Patricia Gruber Foundation
 - IAU, NASL and the KAVLI Prize

ADMINISTRATION

- Administrative Dates & Deadlines
- ► IAU Membership
- General Assembly & Administrative Meetings
- Resolutions
- IAU Executive Bodies

IAU Secretariat

Statutes & Rules