Morphological transformations in clusters and groups: the origin of early-type dwarfs

Lucio Mayer

University of Zurich

Collaborators

Stelios Kazantzidis (Ohio State Uni Chiara Mastropietro (CEA-Saclay) Robert Feldmann (Fermilab) Simone Callegari (U. Zurich) Ewa Lokas (Copernicus Center) Victor Debattista (UCLAN) Thomas Quinn (U.Washington) Fabio Governato (U. Washington) Ben Moore (U. Zurich) James Wadsley (Mc Master U.) Juerg Diemand (U.Zurich)

Early-type dwarfs and dense environments

-Morphology-density relation. Early-type galaxies (E, S0s, dEs, dSphs, dS0s) dominate in cluster cores Lisker et al. 2006;2007; Wilman et al. 2008). For low mass galaxies (e.g dwarfs) morphological segregation evident in all nearby groups (e.g Local Group) Karachentsev et al. 2005;2006) dEs located closer to disks than to Es/SOs in scaling relations (Ferguson & Binggeli 1994; Kormendy 1985;2009; but see Misgeld et al. 2008;2009) Early-type dwarfs with disky features discovered in clusters (Barazza et al. 2003; Lisker et al. 2007) --→ transitional class reflecting morphological transformation in action?

-Faint end of the luminosity function (down to Mb=-10) steeper than in the field (SDSS + LG and nearby groups) for nearby clusters (e.g. Virgo, Coma, Hydra, Fornax) (Trentham et al. 2005; Sabatini et al. 2003, 2005; Milne et al. 2006; Misgeld et al. 2008;2009)

-Clusters (especially cores) have the highest dwarf-to-giant ratios among all known environments. Excess of dwarfs due to red, early type dwarfs, dEs and dS0s (Ferguson & Sandage 1988; Yamamani et al. 2007). Dwarf-to-giant ratio decreases out to $z \sim 0.5$

-Mean star formation (SF) rate different in different environments – SF truncation in clusters and groups (Balogh et al. 2004; Christlein & Zabludoff 2005; Poggianti et al. 2006;2008; Peng et al. 2010 w/ zCOSMOs +SDSS for non-central galaxies) + correlation between specific SF rate and HI deficiency (see Gavazzi's talk yesterday, H α ³ survey)

ORIGIN OF EARLY TYPE DWARFS: OUTLINE

- Tidally induced transformation of low disk mass galaxies origin of the cluster/group population of early type dwarfs (dEs, dSphs, UCDs)
- (2) The ICM-galaxy interaction gas removal from ram pressure
- Cluster cores: high ICM densities, high velocities
- Cluster outskirts/groups: low ICM densities, low velocities
- TOOL: TAILORED SIMULATIONS OF GALAXY INTERACTIONS
- (3) Morphological transformation of a representative (small) galaxy population
- TOOL: COSMOLOGICAL HYDRODYNAMICAL SIMULATIONS

Harassment (repeated fast tidal encounters with massive galaxies – Moore et al. 1996;1998) + tidal stirring (repeated tidal shocks during pericenter passages in cluster/ group core - Mayer et al. 2001,2007; Gnedin 2003) turn late-type spirals into low luminosity spheroidals

Tidal heating/stripping + bar/buckling instabilities increase σ , reduce J

Transformation takes a few orbits ~ a few Gyr after infall into cluster

How "complete" the transformation will be after several Gyr in the cluster depends on pericenter/orbital time and density profile of galaxy

Prediction: late-type population falling into clusters at z < 1evolves into dE

Morphology-density relation in Virgo (Lisker et al. 2007)

(1)Galaxies lose up to 90% of their mass, but none is completely destroyed. More mass loss for galaxies with orbits well within the cluster core, final luminosities down to Mb ~ -15.5 ----> higher dwarf-to-giant ratio in the core + increase of dwarf-to-giant ratio with time.

(2)Shorter orbital times, higher stellar mass loss <-----→ more spheroidal remnant Prediction: dEs and dSphs faintest galaxies in clusters +

Transformation involves removal of angular momentum from the stellar component (induced by stellar bar + tidal torques)

Spheroidal-looking remnants completely supported by velocity dispersion as bone-fide dEs (v/ σ << 1), those with disky features still rotate significantly

Importance of orbital eccentricity in tidal stirring

Kazantzidis et al. (2011); a large survey of parameters space using initial disky dwarfs models constructed with the Widrow & Dubinski method (very stable equilibrium ICs) with Vc ~ 20-40 km/s inside Milky-Way sized galaxies (\rightarrow Vc ~ 100-150 km/s in Virgo)

Both harassment and tidal stirring cannot remove most of the gas (eg Mayer et al. 2006)

For low mass spirals/dlrrs (V of dEs and dSphs) gas remo

Rescaling from Local Group simul ~ 1-2 orbits sufficient to remove co km/s even outside cluster coresoutside the cluster core (Lisker et gas removal faster than morpholog

gas removal faster than morphological transformation of stellar component (see eg Boselli et al. 2008)

A tidal stirring + disruption scenario for UCDs in clusters (Goerdt et al. 2008 – see also Bekki et al. 2003)

Tidal disruption of nucleated dwarf galaxies on the most eccentric among innermost cluster orbits (Rapo <= 200 kpc, Rperi <= 30 kpc in a Virgo-sized cluster-note no such orbits considered in Mastropietro et al. 2005)

A three-Step morphological evolution sequence: Low luminosity nucleated Spiral $\rightarrow dE(N) \rightarrow UCD$

Initial condition: an M33-like galaxy (Vvir ~ 115 km/s, Mdisk ~ 10^{10} Mo, M_{nucleus} ~ 10^{7} Mo) evolved in static NFW cluster halo (Virgo-sized) with SPH (Gasoline) including cooling but no star formation/feedback

•Galaxy tidally destroyed, only the nucleus survives, including its dark matter \rightarrow UCD wth M/L ~ 4-5 predicted

If not tidally destroyed produces a nucleated dE (dE(N)).

Predicted radial distribution of dE(N)s and UCDs from completely disrupted subhalos in cosmological simulation of Virgo-sized galaxy cluster

Above: UCD fraction = n(UCD)/n(UCD+n(dE(N)))

Scenario consistent with the notion theat UCDs and nuclei of dEs are structurally similar (Paudel et al. 2010) – same formation channel (from nucleated late-type galaxies) - *simply tidal disruption more advanced in UCDs than in dE(N)*

Hi-res cosmological dwarf galaxy formation Governato, Brook, Mayer et al., Nature, 463, 203, 2010

TWO SIMS FOR TWO OBJECTS (DG1, DG2)

Vc_{halo} ~ 50 km/s NSPH ~ 2 x 10⁶ particles Ndm ~2 x 10⁶ particles (Msph ~ 10⁹ Mo) spatial resolution (grav. softening) 86 pc

-Cosmic UV background (Haardt & Madau 2008) - High SF threshold 100 atoms/cm³ -Supernovae blastwave feedback model (Stinson et al. 2006)

■Final baryonic mass fraction within Mvir < 0.3 x f_cosmic fraction ■Final disk mass (stars + gas) <= 0.2 x f_cosmic ■Final gas/stars ratio in disk ~ 2.5 (DG1) ,4 (DG2) (galaxy formation efficiency < 10% - see Guo et al. 2010) → M₁ ~ -16.8 (DG1), - 15.9 (DG2) → analogs of NGC 6822, NGC3109 dIrrs

Frame = 15 kpc on a side color-coded gas density Evolution from z=100 to z=0 (DG1)

First realistic late-type dwarfs in cosmological simulations; Star formation and sup. feedback in *inhomogeneous* ISM

Star formation in resolved, dense "molecular" phase (GMCs):

Star formation more localized, only in high density peaks
 → LOCALLY stronger effect of outflows because more energy deposited
 in smaller volume via blastwaves (more gas heated at T > T_{vir}, outflows at ~ 100km/s
 → final baryonic fraction ~ 1/4 of cosmic value)

Outflows mostly in the center of galaxy where density peaks higher

- -> selectively remove low angular momentum material at the center
- -> suppress bulge formation and produce exponential profile for stars
- -> flatten dark matter profile to repeated impulsive dynamical heating ($\rho \sim r^{\beta}, \beta \leq -0.6$)

Independent analysis by the THINGS survey team + comparison with late-type dwarfs in THINGS survey shows excellent agreement (Oh et al. 2011)

slope - 0.29 (mean slope THINGS) sample - 0.31
Note: no explicit correction for non-circular motions
(we obtain ~ - 0.5 from direct measure of the dm profile)

Interaction simulations with "cosmological dwarf" Mayer 2011; Mayer, Callegari, Kazantzidis in prep.

DG2 (Governato et al. 2010) extracted from cosmological simulations at z=1 and z=2 and inserted on orbit into MW model (disk + bulge + halo + gaseous corona) with radiative cooling, high star formation density threshold, blastwave supernovae feedback, time-dependent cosmic ionizing background

20 kpc box, z=2 infall

Initial disk, thick and turbulent as typical in drrs (eg Sanchez-Salchedo et al. 2010) - in equlibrium models thin, laminar disks

Stars after 5 Gyr (2.5 orbits)

20 kpc box

Transformation dlrr -→ dSph confirmed BUT: WEAK BAR INSTABILITIES, STRONGER TIDAL HEATING MORPHOLOGICAL TRANSFORMATION OF A GALAXY POPULATION: COSMOLOGICAL ZOOM-IN HYDRO SIMULATIONS ON THE GROUP SCALE (Mvir ~ 10¹³ Mo)

<~ 10⁷ particles within Rvir Mstar >~ 10⁵ Mo Spatial res. 350 pc Feldmann, Carollo & Mayer 2011

> Density map at z=0 for G2 group

Here the smallest galaxies that we can "properly" resolve (>~ 10^5 particles) are between the LMC and M33 (M_{stars+gas} ~ 10^{10} Mo)

200 крс

A ZOO OF MORPHOLOGIES....

NSersic

TRANSFORMATION FROM DISK TO SPHEROID *VIA COMBINATION OF SEVERAL MECHANISMS* INCLUDING MERGERS PRIOR TO INFALL

Galaxy shown here has 1:2 merger at $z \sim 1.1$ plus ram pressure stripping after

infall into group potental at $z \sim 0.5$

Shown: Stellar density in grey scale HI contours in green z=1.2

z=0.3

In a cluster one expects similar evolutionbut different timing (mergers occur earlier on in protocluster, when relative velocities still small, and galaxies become "satellites" earlier)

10 kpc

EVIDENCE FOR TIDAL STIRRING/HARASSMENT IN EVOLUTION OF KINEMATICS AFTER INFALL IN GROUP POTENTIAL + TRUNCATION OF STAR FORMATION VIA GAS STRIPPING (RAM PRESSURE + TIDAL) INFALL TIME IS KEY TO EFFECTIVE TRANSFORMATION

DISK DOMINATED GALAXY FALLING LATE (z ~ 0.25) REMAINS DISKY AND GAS-RICH (black arrows mark pericenter pass.)

S0-like GALAXY FALLING RELATIVELY EARLY (z ~ 0.5) BECOMES SPHEROIDAL AND DEVOID OF GAS (black arrows mark pericenter pass., red stripes mergers, blue stripe a fly-by)

CONCLUSIONS

(1) Tidal stirring + harassment turn rotating disky dwarfs/dlrrs (Vrot <~ 50-100 km/s) into pressure supported early type dwarfs (dEs/dSphs).

-tidally induced bar-bluckling instabilities shed angular momentum outwards and increase velocity dispersion along with tidal heating

-in clusters harassment more important than in groups because of higher relative velocities and higher number of massive perturbers/galaxies.

 Significant population of dEs/dSphs can be formed at z < 1 in clusters + dEs with disky features naturally explained as transitional objects
 Fainter/older dE/dSph population formed in groups that later accrete onto cluster?

(2)Gas lost by ram pressure *COMBINED* with tides that decrease depth of potential well

(3) UCDs can be understood the tidally driven transformation scenario as surviving nuclei of disrupted nucleated dEs produced by nucleated spiral progenitors on most plunging orbits

(4) Cosmological simulations (group scale for now) confirm qualitatively the crucial role of tidal stirring and ram pressure stripping in producing low-luminosity spheroidals from gas-rich disks (caveat: resolved mass scale not yet in the dwarf regime). However they also show that early mergers (at z > 1) in sub-groups before infall into main potential play a role in initiating the disk-spheroid transformation

Can dSphs Form by Mergers of Disky Dwarfs? Kazantzidis et al. (2010b), in preparation

 \emptyset Binary mergers of dwarfs identified in constrained cosmological simulation of the Local Group (Klimentowski et al. 2010)

ØMost mergers happen at very early times ($z \sim 2-3$) well outside the virial radius of the host. Dwarfs can be accreted by the main halo at much lower z.

Major merger between two dwarfs with $M_{total} \sim 10^7 M_0$ at z ~ 2.5

Ø Final system exhibits the properties of classical dSphs with V/ σ < 1 and projected axis ratio of ~ 0.85

Importance of halo concentration in tidal stirring

Mhalo = 10⁹ Mo

Mstar = 0.01 Mhalo

No gas in dwarf at at t=0

Live primary model disk +bulge+halo model of the (A2 model of the MW by Klypin et al. 2002)

MAKING dEs from late-type disks IN GALAXY CLUSTERS

Enlightening numerical tests

"Erosion" of dark matter density cusp occurs only at high resolution and high star formation density threshold

--> only in such configuration prominent baryonic clumpiness + outflows do occur

Tides + ram pressure in action

A "big dwarf" on a wide orbit (conservative case for all stripping effects) Vpeak= 60 km/s Apocenter = 250 kpc, Pericenter= 30 kpc, gaseous halo profile ~ dm halo profile (NFW) ρ_{nes} (50 kpc) = 8 x 10⁻⁵ cm⁻³

Ram pressure stripping continues on subsequent orbits because potential well o dwarf becomes shallower as a result of tidal shocks

No disk dominated galaxies in CDM simulations = no progenitors of dEs

Simulations

Observations

Cosmological sims that model collisionless dark matter + dissipational baryonic component with radiative cooling, heating, star formation, feedback processes exhibit a mass concentration problem: disk galaxies always form with massive bulges ---- no analog of late-type disks/dlrrs!

A slowly rising rotation curve produced

How?

(1) Removal of baryons (baryonic mass fraction ~ 0.04 at z=0, so 4 times lower than cosmic fb) + (2) flattening of dark matter profile

--During strongest outflows (at z > 1) inner dark matter mass expands as a result of impulsive removal of mass + transient gas clumps transfer energy due to dynamical friction *(confirms earlier models of e.g. Navarro et al. 1996; Read & Gilmore 2003; Maschchenko et al. 2008 – see also Ceverino & Klypin 2009)*

Dark matter density decreases by a factor of ~ 2 at r < 1 kpc and density profile becomes shallower ~ $r^{-0.5}$ rather than ~ $r^{-1.3}$

The response of disky dwarfs to tidal forcing

Tidal stirring = repeated tidal shocks at pericenters with primary galaxy (Weinberg 1994; Gnedin, Hernquist & Ostriker 1999) turn rotationally supported late-type dwarf (v/ $\sigma >> 1$) into faint spheroidals with low v/ $\sigma < 0.5$ (Mayer et al. 2001, 2002; Klimentowski et al. 2008,2009) INITIAL CONDITION IS EQUILIBRIUM DISK+HALO MODEL PLACED ON COSMOLOGICAL ORBIT

Masses Vpeak > 30 km/s, or M > 10 °Mo before accretion (Mayer 2005; Kravtsov et al. 2004, Diemand et al. 2007;) too massive for squelching by reionization to be effective

ng Jeans "modified" und for subhaloes

model for *s 2004.* et al. nore et Strigari et

al. 2006, 2007; Lokas 2009; Strigari, Frenk & White 2010

The hosts of dwarf spheroidals: dark matter subhalos surviving to z=0

- In CDM models subhalos evolve on eccentric orbits (apo/peri = 5:1-20:1)
- Subhalos surviving until the present time have undergone several pericenter passages within the primary halo, being (1) Tidally truncated and (2) repeatedly tidally shocked (Taylor & Babul 2001; Taffoni, Mayer, et al. 2003; Hayashi et al. 2003; Penarrubia et al. 2006; 2008;2010)

z=11.9

From (cosmological) constrained simulation of the LG (Klimentowski et al. 2010)

800 x 600 physical kpc Diemand, Kuhlen, Madau 2006

Mass-to-light ratios

How do we explain very high M/L (> 100 for Draco and UMinor) in the tidal stirring + ram pressure stripping scenario?

And how do we explain that M/L correlates with L

Tides + Ram Pressure Stripping

(Mayer & Wadsley 2003, Mayer et al. 2006, 2007)

-Dwarf model = N-Body +SPH equilibrium model w/disk of gas and stars + NFW halo on cosmological orbit (apo/peri =5:1 – 6:1). Initial structural parameters based on present-day gas-rich dlrrs + CDM simulations -Primary system: dark + hot gaseous MW-sized halo, $\rho(gas) \sim 2-8 \times 10$ atoms/cc and T ~ 10⁶K at 50 kpc (constrained by observations e.g. Sembach et al. 2003; Blitz & Robishaw 2000). Hot diffuse gas halo also prediction of CDM models - leftover of galaxy formation in massive (M_{halo} > 5 x 10¹¹ Mo) halos (White & Frenk 1991; Maller & Bullock 2004; Dekel & Birnboim 2003))

~ 2 million SPH+dm particles per simulation W/radiative cooling + radiative heating from cosmic ionizing backgound (Haardt & Madau 1996+2003) (a) Pick satellites with Vmax ~20-25 km/s today (consistent with kinematics of darkest classical "dSphs", Draco and Umin) and within 100 kpc from MW in hi-res cosmological Λ CDM dark matter-only simulation - (b) Trace the orbit back in time --> > 50% are "old" accreted satellites that fell in at z > 1.5 -> exposed to high cosmic UV bg at accretion - (c) Hi-res model of gas dominated disk-like progenitor (gas/stars = 8:1) set to fall into Milky Way halo on orbit and tinfall time determined at (b)

Mayer, Kazantzidis, Mastropietro & Wadsley *Nature, 2007*

Stars

1<z<2)

Orbit fro Hal

Gas is complete tidal shocks lowe

SF suppressed because gas ionized and below density threshold for H2 formation

Implications/Predictions for stirring+ gas stripping scenario

(1) Final M/L driven by initial gas fraction in disky progenitor
 Larger initial fgas (> 0.9 normal for present-day dlrrs – Geha et al. 2006;
 McGaugh et al. 2009) -→ for early infall final M/L up to 10³

Prediction: dSphs with Vmax ~ 10-30 km/s with M/L >> 100 should exist (some of the ultra-faint dwarfs, e.g. Ursa Major I) -→ helps to solve missing satellites problem at high mass end where reionization alone would fail (Vmax ~ 15-30 km/s – see Kravtsov 2010)

(2) M/L and SF history dependent on infall epoch

Naturally explains why Draco and Fornax have similar σ (Vmax) but M/L different by a factor of 10 \rightarrow Fornax infall at z < 1 (weaker ram pressure+tidal stripping+ weak UV=more baryons retained)

Predictions:

(1) Positive correlation between M/L and timescale of SF
 (2) Anticorrelation between M/L, L, mean orbital distance
 Test case: Fornax should be on wider orbit than Draco
Gas mass loss: tides + ram pressure + UV

- Ram pressure produces higher gas mass loss relative to tides.

- Stripping with tides + ram pressure higher relative to ram pressure only since potential well of the dwarf is substantially weakened (V_{peak} drops)
- With high intensity of cosmic UV bg (z > 1) gas is warmer and more diffuse
- --- \rightarrow is more efficiently stripped

ORBIT FIXED: Apo=150 :kpc Peri=30 kpc

"standard" uniform high-z cosmic UV bg (Haardt & Madau) Assumes infall at z=2 *(UV bg ~ 10 times higher than at z=0)*

Satellites accreting late (z < 1): gas retained for many orbits + extended SF history because effect of UV bg weak (Mayer et al. 2007, Mayer 2010)

SF computed with Kennicutt-Schmidt law

new SF concentrated central region → age gradient as a function of distance (Mayer 2010) See E. Grebel's talk


```
From Hernandez et al. (2000)
```

Star formation is periodic: gas driven bar inflow and tidal compression at pericenter passages

--> Different infall times drive variety of SF histories

Dwarf spheroidals (dSphs)

Dwarf irregulars (dlrrs)

•faint, low surface brightness (M_B > -18, μ_B > 23 mag arcsec⁻²)

■Low angular momentum content, $v/\sigma < 0.5$ for dSphs, high angular momentum for gas-rich dwarfs (dIrrs), some dwarfs in between (e.g. $v/\sigma \sim 1$ for Tucana – Fraternali et al. 2009) ■Very low gas content for dSphs (<< Mstar), very high gas content for dIrrs (~> Mstar),

■MORPHOLOGY-DENSITY RELATION (Grebel '99; Karachentsev '08 - E. Grebel's talk) dSphs clustered near primary galaxy (R < Rvir), dIrrs in the field (R > Rvir)→ --→ role of environmental mechanisms important

On ultra-faint dSphs and "isolated" dSphs

■Many ultra-faint dwarfs have very low σ (< 5 km/s) -→ live in lower mass halos compared to classical dSphs: even accounting for stripping halo mass before accretion < 10⁸ Mo (Mayer 2010) -→ subject to photoevaporation by UV bg at high z (Susa & Umemura 2004) or blow-out by sup. feedback (Sawala et al. 2010). Possibly reionization fossils (Ricotti & Gnedin 2005; Ricotti 2010), tidal stirring marginal if already "hot" + tiny stellar system before infall into primary (Mayer 2010, Kazantzidis et al. 2010).

Some ultra faint-dwarfs could be satellites of satellites (e.g. Segue 2 – Belokurov et al. 2009) which suffered tidal stirring by their larger dwarf companion before infall into primary

■Distant dSphs (e.g. Cetus/Tucana – Monelli's and Hidalgo's talks) ar R > Rvir: observations suggest v/ $\sigma \sim 1 \rightarrow$ consistent with non-complete transformation by tidal stirring because large pericenter/few pericenter passages but still would require extreme orbit (apo/per > 10:1) and/or resonant stripping if dwarf's disk prograde with primary's disk (d'Onghia al. 2010).

Tucana and Cetus are receding from primaries; perhaps ejected by three-body scattering (Sales et al. 2007) → if were on smaller orbit before, tidal stirring origin more likely
 Different formation mechanism, e.g. blow-out by supernovae feedback (Sawala et al. 2010 but Tucana's halo mass quite high for effective blow-out) *OR*.....

The star formation density threshold: tests with hi-res isolated galaxy models

"Low" SF density threshold (corresponds to warm neutral medium - adopted in all cosmological simulations by all groups till 2009)

ρ > 0.1 cm -³

"High" SF density threshold (corresponds to molecular gas), feasible only at hi-res

$\rho > 100 \ cm^{-3}$

HI map M33 (Blitz et al. 2006)

Callegari, Brook, Mayer, Governato, 2009 See also Robertson & Kravtsov 2008; Gnedin et al. 2009; Pelupessy et al. 2009 on the importance of molecular gas to model SF correctly

Tidal stirring more effective if dwarf has shallower potential well (response more impulsive)

Trend with concentration of NFW halos suggests tidal stirring would be even more efficient if dwarfs' halo shallower than NFW as predicted by Governato et al. (2010) -→ likely easier to explain most distant dSphs (Leo I-II, perhaps Tucana, Cetus)

Runs have same initial model for stellar disk + same initial orbit (peri= 25 kpc, apo=125 kpc)

Kazantzidis et al. 2010

Dark matter in gas-rich dwarfs; cusps or cores?

See de Blok (2010) for a recent review

Strong connection between dynamical and hydrodynamical processes

-Complete gas removal (w/UV) is crucial for effective tidal heating into a spheroidal over 10 Gyr

-If gas is retained bar-driven inflow stifles tidal heating by increasing the central depth of the potential (response to tides more adiabatic, see Supp. Material on *Nature*)

New detailed analysis of tidally stirred dwarfs by Klimentowski et al. 2009 (MNRAS, in press))

Supports mapping $V_{max} = 3^{1/2} s$ for velocity distribution of substructure. For missing satellites problem it means solutions in which V_{max} very large (Vmax ~ 3s – e.g. Stoehr et al. 2002; Penarrubia et al. 2007) unlikely

So far:

§Tides+ram pressure stripping at z > 1 (high UV radiation) explain complete gas removal in dSphs with initial V_{peak} ~ 20-50 km/s

§Tides transform high v/s disks into low v/s spheroidals

§Both processes more efficient the closer the distance from the primary - naturally explain the morphology-density relation

But how to explain very high M/L in some dSphs (and lower in others)? dIrrs have M/L ~ 10-30 (comparable with e.g. Fornax but not with e.g. Draco)

Model described has a major caveat: the initial conditions before the interaction are somewhat arbitrary

Next step:

Repeat interaction experiments use fully cosmological simulations of dwarf galaxy formation to set the initial conditions (Kazantzidis, Mayer & Callegari, in prep.), Including distribution of initial stellar ages and stellar/gas metallicities

Cosmological simulations employed are the first to produce a realistic, bulgeless gas-rich dwarf galaxy (slowly rising rotation curve, exp. disk) thanks to unprecedented resolution and a more realistic star formation model based on molecular gas densities

Hi-res dwarf galaxy formation simulations

Vpeak (z=0) ~ 60 km/s NSPH ~ 2 x 10° particles Ndm ~2 x 10° particles (Msph ~ 1000 Mo – we resolve GMCs)

Color coded gas density Shown

(Governato, Brook, Mayer et al. 2009)

Baryon Fraction ~0.067 No Bulge, Exponential profile, Slowly Rising Rotation Curve

....and...ends up with cored halo from NFW (see also Read & Gilmore

But tides do not remove enough gas

--up to 50% of the gas stripped while another $>\sim30\%$ of the gas is consumed in star formation. The rest stays!

Typical final Mgas/Mstars >~ 0.1 in sims (Mayer et al. 2001; Mayer 2005) while M(HI)/Mstars <0.05 required to match dSphs (e.g. Mateo 1998).

Final V/ (after ~ 10 Gyr)

Large suite of different initial models and different orbits

Mayer et al. 2001, 2002

-2

-2

Ρεμναντσ αρε μοδερατελψ τριαξιαλ

Within R=Re

Διφφερεντ σψμβολσ ρεφερ το λινε οφ σιγητσ αλουγ διφφερεντ αξεσ Φιλλέδ Σψμβολσ=ΛΣΒ δισκσ, > 23 μαγ αρχσεχ Οπεν Σψμβολσ=ΗΣΒ δισκσ, < 23 μαγ αρχσεχ

Loss of angular momentum due to bar formation (vt) + heating by tides/buckling () + $T_1\delta\alpha\lambda$ $\sigma_1\rho_1\nu\gamma$ $\pi\rho\delta\nu\chi\epsilon\sigma$ $\pi\rho\epsilon\sigma\sigma\nu\rho\epsilon$ $\sigma_1\pi\rho_1\nu\gamma$

Hi-res dwarf galaxy formation simulation

 $Vc_{halo} \sim 50$ km/s NSPH ~ 2 x 10⁶ particles Ndm ~2 x 10⁶ particles (Msph ~ 10³ Mo) spatial resolution (grav. softening) 75 pc

- High SF threshold 100 atoms/cm³

Cooling function includes metal lines (gas cools below 10⁴ K)
+ heating by cosmic UV background

Simulation goes to z=0

Good match with kinematics of dSphs (e.g. Draco)

In general dSphs show nearly flat velocity dispersion profiles (Walcher et al. 2006;Gilmore et al. 2007; Munoz et al. 2006, 2007) as those predicted by our simulations

The theoretical perspective; dwarf satellites as CDM subhaloes evolve (mass,size) while continously interacting with host halo

Diemand, Kunien, Madau 2006

Via Lactea - (Diemand et al. 2007)

300 million particles MW halo with our parallel treecode PKDGRAV

In progress: proximity effect, i.e. local UV radiation from MW

Starbursting MW at z=2 as bulge forms (SFR ~ 50 Mo/yr, like LIRG): - Within 50 kpc 5-10 times higher flux than cosmic bg (satellites infalling at z > 1 have all pericenters << 50 kpc, see Diemand et al. 2007)

Also will look at effect in clusters:

Preliminary calculations including only effect of BCGs suggest galaxies with Vmax ~< 120 km/s strongly affected in cluster core. Might be crucial to understand faint end of LF.

Mayer 2005 Mayer & Porciani in preparation

-Star formation suppressed because gas density always too low (mainly because of photoheating by UV bg, note that Vmax drops rapidly to < 30 km/s)

-Instantaneou passages (Vr (laminar visco

-Dwarfs stabl ablation of ga stabilization k content, see enter + continous - a few T_{orb}

TIDAL AND RAM PRESSURE FORCES DON'T JUST SUM UP....

Bar instability + cooling opposes stripping by driving gas to smaller radii, deeper in the potential well of the dwarf. Gas within bar radius not stripped unless heating source expands gas again

Evolution of gas surface density profiles, dwarf with initial Vpeak = 60 km/s

Tidal stirring = repeated tidal shocks at pericenters with primary galaxy (Weinberg 1994; Gnedin, Hernquist & Ostriker 1999) turn late-type dwarf (dIrrs) into faint spheroidals (Mayer et al. 2001a,b; 2002) Physics: Tidal heating/stripping + bar/buckling instabilities Bar tidally triggered, galaxy stable in isolation due to low surface density

- How "complete" the transformation will be after several Gyr depends on orbit and initial galaxy rotation curve/gravitational potential

- Given an initial galaxy model more and stronger tidal shocks (low peri) yield more complete transformation

Need help from very hi-res controlled simulations. Example: interaction simulations to study origin of morphology-density relation

Hi-res N-Body+SPH models of disky dwarfs (Hernquist 1993) --- Vc ~ 30-70 km/s Assumption: dwarf disky at formation since baryons collapse in resigning halos in CDM (White & Rees 1978; see also Kaufmann,)//

Initial conditions

(1) orbits and structure of galaxies/halos (NFW) from cosmological runs + scaling relations between baryonic disk and halo from Mo, Mao & White (1998)
 (2) free parameters (e.g. disk mass fraction, gas fraction in disk) chosen based on

observations of late type dwarfs (e.g. de Blo<mark>k & McGaugh 1997; Geha et al. 2006)</mark>

•Throw them in a massive MW-sized galaxy halo Hypothesis to verify. transformation of late type dwarfs into early type dwarfs driven by tidal interaction with massive primary halo

Mayer et al. 2001, 2002, 2003, 2006

What's next?

-Verify model with new generations of cosmo+hydro simulations, i.e. look at statistics of a satellite population as opposed to simulating individual cases (w/Beth Willman and Fabio Governato)

-Compare with upcoming proper motions (e.g. GAIA) that should measure the orbits of the satellites. Expected is trend between orbital time and M/L (while now only distance is known) \Box easy to falsify model

-Study origin and evolution of "field" dwarfs (dirrs) as opposed to dSphs. Use simulations combined with new detailed SF histories of LG dIrrs obtained within the LCID program with ACS/HST (Minnesota/Michigan/IAC/STIS) Idea: limited effect of environment, better tracers of cosmic reionization

Evolution of a gas dominated dwarf in MW potential

Mayer, Kazantzidis, Mastropietro, Wadsley, Nature, 2007, 445, 738

Mgas/Mdisk ~ 0.8, consistent with assumed baryonic surface density based on Li, MacLow & Klessen 2005

Tube Flow runs: ram pressure only

2 million SPH particles to control numerical artifacts

Vpeak=40 km/s

-- Complete stripping requires Vpeak < 30 Km/s (also Marcolini, Brighenti & Matthews 2003 with eulerian code)

-- Stripping reduced with cooling, less gas leaves the disk + fall back of some gas that leaves the disk

Vpeak=25 km/s

T=0.05 Gyr

T=0.2 Gyr

radiative cooling

Cosmological simulations with dm + baryons Formation of a Milky Way-sized galaxy

(Ngas, Ndm > 10⁶ within R < Rvir) Gravity+Hydro+SF+sup. feedback (Governato,Willman, Mayer et al. 2007) Mayer, Governato and Kaufmann 2008; Governato et al., 2008)

Movie shows colorcoded density

Green=gas Blue= young stars Red=old stars

Numerical resolution issue:

10⁵-10⁶ SPH and DM particles needed in individual objects to control numerical twobody heating, numerical loss of angular momentum and overcooling (Mayer 2004; Kaufmann, Mayer et al. 2007) – now possible for central galaxy but not (yet) for satellites

Why stripping more effective with no radiative cooling?

 Gas of the dwarf heated by compression from external medium (galaxy moves mildly supersonically)
 Without radiative cooling adiabatically expands and becomes easier to strip, with radiative cooling cools much faster than it can expand.

Why do we care about LG dwarf satellites?

- They are the closest and thus best studied among dwarf galaxies ----> galaxy formation

- They are the most dark matter dominated galaxies known - nature of dark matter

- They are associated with the CDM crisis at small scales, namely the missing satellite problem - structure formation

•Multi-scale (< 1 pc to 1 kpc) – resolution of numerical models of cos formation was only ~ 1 kpc till 2004, <100 pc today</p>

•Multi-process: cooling, heating, phase transitions (e.g. from HI to H₂) star formation, stellar explosions, self-gravity, MHD phenomena, visc (what source viscosity?). Some of these processes not completely understood plus require interplay between many scales

"Decently" resolved satellites (Npart > 1000) in LCDM simulation Mayer 2005

ong correlation between kinematics of the stellar component dwarfs and the number orbits. t satellites within 200 kpc from the primary completed more n one orbit and have v/s << 1 like dSphs. Ital time is the key parameter governing Tidal Stirring yer et al. 2001b). High resolution galaxy formation (*Governato, Mayer et al. 2004, 2005*) Multi-mass refinement technique: < 1kpc spatial resolution in a 100Mpc box (N-Body + SPH)

Technique pionnered by Katz & White (1993)

(1)Galaxies lose up to 90% of their mass, but none is completely destroyed. More mass loss for galaxies with orbits well within the cluster core, final luminosities down to Mb ~ -15.5 ----> higher dwarf-to-giant ratio in the core + increase of dwarf-to-giant ratio with time.

(2)Higher stellar mass loss <----- more spheroidal remnant Indeed dEs faintest galaxies in clusters

(Quilis et al. 2000)

Result: truncation of star formation, passive spiral or S0 (but tides crucial to shape morphology – see next talk by Oleg Gnedin)

R = 6.0 Mpc

z = 10.155

diemand 2003

What has determined the present-day structure, star formation histories and spatial distribution of dwarf satellites?

- What is more important, internal mechanisms -- e.g feedback from star formation -- or environmental mechanisms -- e.g. tidal effects, ram pressure? Or is the key a combined role of both??

- How massive are the satellites of the Milky Way?
- Is the missing satellites problem still a problem?

-What is the relation, if any, between dwarf satellites and reionization? Where most of their stars formed before or after reionization?

Luminosity function of satellites

Governato, Willman, Mayer et al. 2006

UV + SN feedback nearly reproduce the correct number of satellites expected within a Milky Way sized halo (see also Bullock et al. 2000, Somerville 2002) These satellites are all gas poor at z=0 (as dSphs and dEs)

However still

Transformation involves removal of angular momentum from the stellar component.

Spheroidal-looking remnants supported by velocity dispersion as bone-fide dSphs (v/s << 1), when disky features still present rotation still significant

(to be tested with obs., see Geha et al. 2003)

Population of transitional dwarfs "dEdis"recently discovered in Virgo by Barazza et al. 2004 and Lisker et al. 2006 Should be many more in clusters because much larger population of recent infallers, in MW-halo disky features already erased by t=0 because more tidal shocks

Star formation histories of satellites in cosmo. sim

"Small satellites" in LR sim, Vp=35-45 km/s

Small satellites in HR sim, Vp=18-35 km/s at z = 1

Bulk of star formation occurs after reionization

•Wide variety of star formation histories is seen; more extended star formation histories for bigger satellites and satellites with larger pericenters. No satellite With SF lasting for less than 2.5-3 Gyr (implications for metallicity)

•Peaks of star formation *sometimes* correlated with pericenter passages

Where do the z=0 galaxy satellites come from?

Mayer, Willman et al., in prep.

Present-day satellites come from regions that were mildly overdense (\sim 1.5 s peaks) at z=6. They were just starting to collapse.

The highest (> 3.5 s) peaks at z > 6 merged and formed the bulge, stellar halo and maybe the GC system (see also Diemand, Madau & Moore 2005)

How to simulate the formation of the MW and its satellites?

Proper simulations with dark matter+baryons in a cosmological context extremely complex. One should:

1)Include the baryons and all the relevant processes, both internal (star formation, feedback) and environmental (tidal stripping, ram pressure, reionization)

2) High resolution to resolve dwarf galaxy-sized objects

3)Start at high z and go on until z=0 to compare with the data that we have.

Uncertain modeling of physics in (1) plus (2,3) too many Tflops/s even on the best available parallel machines with current computational techniques.

Need some compromises....

Masses of dwarf spheroidals and reionization

They live in fairly big halos, Vpeak > 20 km/s today, were Vpeak > 30 km/s when they first fell into the primary (see Kravtsov et al. 2004; Mayer 2005). ---> feedback by supernovae (MacLow & Ferrara 2000; Mori et al. 2003) and photoevaporation by cosmic UV bg effective at *lower* Vpeak, < 20 km/s (Susa & Umemura 2004, 2005)

Kazantzidis, Mayer et al. 2004

Fitting observed kinematics in cuspy tidally stripped subhaloes using Jeans equation

King model for stellar distribution

also Lokas 2004, Wilkinson et al. 2005, Strigari et al. 2006, 2007

The morphology-density re<mark>lation in the Local</mark>

Grebel & Guhathakurta 1999

- × 2 Γιαντ σπιραλσ
- × > 60 Δωαρφσ40% δΙρρσ
 - $^{ imes}$ (Gas rich, vrot/s > 1
 - Low surface brightness,
 - exp. stellar profiles•
- × 40% δΣπησ
- × 5% δEσ
- \times (Gas poor, vrot/s < 1,
- Low surface brightness,
 - exp. stellar profiles)
 - 15% τρανσιτιον

Tests with isolated galaxy N-Body+SPH models (Stinson et al. 2005) SF efficiency 0.05/Tdyn SN efficiency = $0.6 \, \$^1 10$ erg

Gas Rich Dwarf Galaxy VC ~70Km/sec Gas=white

Gas=red Stars=white Milky Way As Klypin, Zhao & Somerville 2001, Vc ~ 160 km/s

SFR Stellar Rz/Rdisk ~ 0.3 /olume ratio Cold Gas/Hot gas ~ 0.5-1 within stellar disk Cold Gas turbulence ~ 20Km/sec

Why should we care about the Local Group?

•It is the best known sample of galaxies in the Universe, hence the most important testbed for theories of galaxy formation

•We need to understand the origin and history of present-day galaxies if we want to understand the high redshift Universe. The history of LG galaxies can tell us a lot about history of mass, light and chemistry in the Universe

EVEN DWARFS WITH MASSIVE HALOS TRANSMUTE

Initial Vpeak=35 km/s, fdisk=4% c=16 NFW HALO, shown is morphology after 10 Gyr (~5 orbits, Rperi=25 kpc, Rapo=120 kpc). Final (M/L)e ~ 40

Dwarf galaxies have shallow potential wells (total mass 10⁷-10⁹ Mo) ---> low binding energy means several internal and external processes can remove baryons (stars and gas) if they deposit enough thermal or kinetic energy to them.

Example: photoevaporation = UV photons during reionization heat the gas to a few 10⁴ K, > virial temperature of a 10⁸ Mo halo (Babul & Rees 1992; Quinn et al. 1997; Bullock, Kravtsov & Weinberg 2000)

Very small halos could lose their baryons completely and remain dark explaining why they are not seen!

§Ο

§L

MHI < 0.01 Mstar §Variety of SF histories, truncated or extended (Skillman 2005; Dolphin et al. 2006)

V/ after 8 Gyr

Suite of different initial models and different orbits

Mayer et al. 2001

-2

-2

Ρεμναντσ αρε μοδερατελψ τριαξιαλ Διφφερεντ σψμβολσ ρεφερ το λινε οφ σιγητσ αλονγ διφφερεντ αξεσ Φιλλεδ Σψμβολσ=ΛΣΒ δισκσ, > 23 μαγ αρχσεχ Οπεν Σψμβολσ=ΗΣΒ δισκσ, < 23 μαγ αρχσεχ

Loss of angular momentum due to bar instability (vt) + heating by tides/buckling () Tioal στιρρινγ προδυχεσ πρεσσυρε συππορτεδ ρεμναντσ ασ δΣπησ

Within R=Re

-Pick satellites with Vmax ~20-25 km/s today (consistent with kinematics of darkest dSphs, Draco and Umin) and

Τιδεσ ινδυχε βαρ/βυχκλινγ ινσταβιλιτιεσ Τυρν δισκ ιντο σπηεροιδαλ

LSB disk apo/peri = 5 Apo=250 kpc Peri=50 kpc Star particles shown

Mayer et al. 2001a,b Mayer et al. 2002

> See also Raha et al. (1991) Merritt & Sellwood (1994), Combes et al. (1990)

10 x 10 kpc

OUTLINE?

TIDAL STIRRING of dwarf galaxy satellites

Not enough resolution in subhalos of cosmological simulations with hydro ----> study interaction between a dwarf galaxy and a massive spiral with hi-res N-Body + SPH sims (with GASOLINE), a few million particles per single dwarf model.

Initial conditions

(1) orbits and structure of galaxies/halos (NFW) from cosmological runs + scaling relations between baryonic disk and halo from Mo, Mao & White (1998)
(2) free parameters (e.g. disk mass fraction, gas fraction in disk) chosen based on observations of late-type dwarfs (e.g. de Blok & McGaugh 1997; Geha et al. 2006)

S. Kazantzidis 2003

time = 0.00 Gyr

Mayer et al. (2000, 2001;2002)

How did dwarf spheroidals lose their gas?

-Feedback from supernovae (Dekel & Silk 1987) Blow-out of most gas only at very small halo masses, M_{vir} < 10⁷ Mo (Mac Low & Ferrara 1999; Mori et al. 2001; Read, Pontzen & Viel 2006;Ceverino & Klypin 2008)

-Suppression of gas accretion or photoevaporation due to the cosmic UV radiation (Babul & Rees 1992; Quinn et al. 1996, Bullock, Kravtsov & Weinberg 2000, Gnedin 2000) Most recent simulations including self-shielding indicate Vpeak < 20 km/s (M < 10⁸ Mo) required for gas fraction to drop to < 0.01 Mdark (Susa & Umemura 2004, 2005)

The gaseous disk gradually shrinks The compression increases the den star formation. Wind to weak for stripping, only the disk edges ablated.

Ø

Key questions

What if the progenitor was gas dominated?

(1)Late-type dv today (e.g. Moore 2004

Plausible assum

(2)Simple anal should be To density (Ver Q ~ 1 not ne dwarf scales

(3) Hydro simu predict near 1.5 gas disk as that of dlrrs (Li, MacLow & Klessen 2005; Robertson et al., in prep.)

NGC 2915

ce mre eshold at

0.5

ould ty, Q >

TIDAL STIRRING WITHIN THE MW HALO

Mayer et al. (2000, 2001a,b, 2002)

L

S. Kazantzidis 2003

time = 0.00 Gyr

DM+stars

Example of numerical effects due to limited resolution

Primary MW-sized halo

Artificial angular momentum loss (e.g. Kaufmann, Mayer et al. 2006)

Numerical effects X10 for satellites that have 100 times less particles than primary

Ram press intergalacti Marcolini et al.

Gas is strip

In general tin orbit (both r a general if gal

Additional gainstabilities (I stripping") and vis

es through Robishaw 2000;

on a non-circular ndent in e.g. tidal effects.

-<mark>amical</mark> 'turbulent

Theoretical perspective: counting subhalos in dm-only cosmologisimulations - "missing satellites problem"

Gas dominated progenitors for darkest dSphs

Mayer, Kazantzidis, Mastropietro, Wadsley, Nature, 2007, 445, 738

Plausible assu

(1) Most late-type McGaugh 200 THINGS surve et al. 2009)

(2)Both hydro sim obtain that low because of low UV ionizing rad molecular gas Robertson & K

State-of-the-art survey of atomic hydrogen (HI) in nearby galaxies at NRAO Very Large Array (VLA) (combined with Spitzer photometry)

Walter et al. 2008 ,2009

Hi-res 2D velocity fields

Key questions

(1) What is the origin of the morphology-density relation?

(2) Why are dSphs devoid of gas?

(3) Why are some dSphs extremely dark matter dominated ("darkest" galaxies known!) and some less? Why mass-to-light ratio anticorrelates with luminosity?

(4) Can we shed light on the missing satellite problem in trying to answer (1)-(3)?

All these problems involve the mapping between dm and light

Dark matter and stars are only partially stripped (suffer only tidal effects) and are stripped at similar rate ----> $M_{dm}/M_{stars} \sim constant = final Mdm/Mbaryon > 100!$ Naturally obtain very large mass-to-light ratio starting from a normal mass-to-light ratio (~ 20)

Dashed = log(Mtot/Mbaryon) Solid = log (M/L)

Black: Initial values Red = Final values (i.e. after 10 Gyr of orbital evolution)

Formation and morphological evolution of dwarf galaxies in a hierarchical Universe

Lucio Mayer

Collaborators

Stelios Kazantzidis (CCAPP Ohio State Univ.), Simone Callegari (PhD student, University of Zurich), Chiara Mastropietro (LERMA, Paris) James Wadsley (McMaster Univ.), Ewa Lokas (Copernicus AC), Fabio Governato (UW), Chris Brook (UCLAN), Alyson Brooks (Caltech), Beth Willman (Haveford), Thomas Quinn (UW), Jaroslaw Klimentowski (Copernicus AC), Jorge Penarrubia (IoA Cambridge), Greg Stinson (UCLAN), LCID collaboration and many others....