Velocity Dispersions of Galactic GCs: Testing Gravity?

RICHARD LANE LASZLO KISS GERAINT LEWIS Universidad de Concepción Konkoly Observatory University of Sydney RODRIGO IBATA ARNAUD SIEBERT TIM BEDDING Strasbourg Observatory Strasbourg Observatory University of Sydney

Globular Clusters

Pressure supported

•
$$10^{3(?)} - 10^{7(?)} M_{sr}$$

- Single stellar population(ish)
- Apparently contain little, or no, dark matter...
 - dynamical models (Phinney 1993)
 - N-body simulations (Moore 1996)
 - observations of GC tidal tails (Odenkirchen et al. 2001)
 - lack of microlensing events (Navarro, Frenk & White 1997; Ibata et al. 2002)
 - low M/L_{V} (Lane et al. 2009, 2010a,b and many others)
 - etc

Globular Clusters

NGC 288

$$\sigma^2(R) = \frac{\sigma_0^2}{\sqrt{(1 + R^2/r_s^2)}}$$

Scarpa et al. (2007)

Lane et al. (2010b)

M30

Scarpa et al. (2007)

Lane et al. (2009)

M4

Lane et al. (2010b)

M4

Lane et al. (2010b)

Küpper et al., (2010)

M53 (DSS – 30' x 30'): Dist~18kpc

1465 spectra180 members

Smith et al. (submitted)

Smith et al. (submitted)

Conclusions/Summary

A projected velocity dispersion profile is an interesting, but dangerous, animal which should be handled with care

Conclusions/Summary

A projected velocity dispersion profile is an interesting, but dangerous, animal which should be handled with care

• If our results and the Smith and Küpper simulations are correct, then:

• Except for the most distant globular clusters, the velocity dispersion profile tells us very little, if anything, about deviations from Newtonian gravity, and

• It gives us some information about the M/L of low-mass stellar systems, but we should not be surprised if our assumptions about these objects being in equilibrium are incorrect, and in this case the dynamical M/L will be inflated, especially at apogalacticon