

Paulina Assmann (Concepción)

Michael Fellhauer (Concepción)

Mark Wilkinson (Leicester)

Overview

Why study dSph?

dSph are faint almost invisible blobs = boring ???

ACDM Cosmology

Predicts:

- Dwarf Galaxies form first in large quantities
- Are the basic building blocks of all larger galaxies
- Are the most dark matter dominated objects (M/L from several tens to >1000)

Problem 1 : N° of Dwarf Galaxies around Large Galaxies

The Vía Lactea Simulation

- simulations
 predict thousands
 of dwarf galaxies
 around the MW
- With the detection of the faint and ultra-faint population this problem seems to be solved?

Problem 2 : Shape of the dark matter halo Cusped or Cored ?

- ACDM cosmology predicts cusped profiles.
- Observations favour cored profiles

What do we know about star formation?

Star Formation & Star Clusters

Final step of the star cluster formation

Star cluster

- Stars have formed in the embedded cluster phase
- Now the stars expell the remaining gas by stellar winds & super novae
- Leaving the cluster out of virial equilibrium and expanding
- If the SFE is around 30% the star cluster survives

Merging of Star Clusters

- The gas inside a dSph might form many star clusters
- Star clusters interact
 with each other and
 merge in the centre of
 the dark matter halo
- At the same time they expand and dissolve

So here we start with our models

Distribution of the N_{cl} star clusters: Plummer distribution with $R_{pl,sc}$ and $M_{pl,sc} = 4.5 \times 10^5 M_{sun}$

Star formation efficiency $\varepsilon = 0.3$ $M_{pl,cl,end} = \varepsilon M_{pl,cl,init}$

> DM halo: $M_{DM}(500pc) = const.$ Cusped = NFW profile r_{scale} and M_{vir}

> Cored = Plummer profile $R_{pl,DM}$ and $M_{pl,DM}$

Our simulation-parameters

- $M_{DM}(500pc) = 5x10^6$, 10^7 , $4x10^7$ and 10^8 M_{sun}
- $R_{\text{scale,DM}} = 0.25, 0.5, 1.0, 2.0 \text{ kpc (Plummer or NFW)}$
- $R_{pl,sc} = 0.25 \text{ kpc}$
- $N_{cl} = 15$ and 30 star clusters
- $\varepsilon = 0.3$ (star clusters are dissolving)

And more to come...

What are the results and what are the general trends?

Results

- Star clusters dissolve and form an extended luminous object which looks like a dSph galaxy
- Outer parts show faint remnants of dissolved star clusters even after 10 Gyr but these features are too faint to be observationally detectable

Results

 Velocity dispersion is similar to the ones found with dSph galaxies (around 10 km/s) and distributes a flat profile but shows some aspherical features in a 2D-plot

Results

- We also see streaming motions if we plot the 2D mean velocity calculated pixel by pixel, even after 10 Gyr of evolution
- We call these velocity signatures of the merging process "fossil remnants"

changing $M_{DM}(500pc)$

- With increasing dark matter mass we see:
 - naturally an increase the velocity dispersion $\boldsymbol{\sigma}$
 - -A trend to more extended luminous components (larger r_s)
 - An increase in the strength of fossil remnants (has to be verified if statistically significant)

Changing R_{scale,DM}

- If we increase the scale-length of the dark matter halo by keeping the mass within 500 pc constant (i.e. flatter profiles) we see:
 - The velocity dispersion stays constant when using a Plummer profile
 - The velocity dispersion increases in NFW haloes
 - A small increase in fossil remnants (maybe not statistically not significant)

Changing N_{cl}

- When we distribute the luminous mass into more star clusters we see:
 - No changes in the velocity dispersions
 - A small increase in fossil remnants (maybe not statistically significant)

- If $M_{\rm DM}(500 {\rm pc})$ is too high (~ $10^8 \, {\rm M}_{\rm sun}$) we see a lot of unmerged star clusters
- If R_{scale,DM} is too high (~ 2 kpc) we get unmerged SC as well
- Large scale-lengths not only favour flatter velocity dispersion profiles they also favour the fossil remnants
- High DM masses favour the remnants as well
- NFW profiles erase remnants better than Plummer profiles

"Best fit model"

- To get a velocity dispersion of 10 km/s in the centre, we need less M_{DM} than observations predict: only M_{DM} (500pc) ~ $10^7 \, M_{sun}$
- The velocity dispersion profile (i.e. flat profile) is best reproduced if the scale-length of the halo is 1 kpc
- Plummer and NFW fit equally well Plummer shows more fossil remnants

One model fits Sextans

• Figures and pretty pictures are soon to be found in Assmann et al. (2011) in prep. – so please stay tuned...

Thanks!

