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Beyond the traditional paradigm of GCs: Theoretical Motivations

Spherical King models provide a successful zeroth-order interpretation of GCs

But more realistic equilibrium models should include ...

m External tidal field:
Energy truncation in King models is imposed heuristically to mimic the role
of tides, but the triaxial tidal field should be imposed self-consistently

m Internal rotation:
Present-day GCs are only slowly rotating. But in the past?
Solid-body or differential?

m Anisotropy in the velocity space:
Quasi-relaxed systems are expected to be approximately isotropic, but:

- less-relaxed objects may keep memory of their formation process.

- evolution in a (variable) tidal field may produce non-trivial kinematical
signatures.

Deviations from spherical symmetry are induced!
Physical origin of the observed flattening? van den sergn a3 2008



New measurements of shapes and sizes of
116 GGCs are available

Chen & Chen ApJ 2010

Existence of the “extra-tidal light” is
frequently reported

e.g McLaughlin & van der Marel ApJ 2005, Jordi & Grebel A&%A 2010

Proper motions of thousands of stars have
been measured in selected GCs
w Cen e.g. Anderson & van der Marel 2010

47 Tuc e.g. McLaughlin et al ApJS 2006

New kinematical measurements (velocity
dispersion profile, rotation curve) are
available

e.g. Sollima et al MNRAS 2009, Lane et al 2009, 2010

Renewed modeling
efforts are needed
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Triaxial Tidal Models




TIDAL MODELS: Definitions Bertin & Varri ApJ 2008

m Distribution function
f(B) = Alexp (—aE) —exp (—aEy)] if E < Ey
271 0 if E> Eo

King AJ 1966

1, . . .
E=§(x2+y2+z2)+<1>c



Bertin & Varri ApJ 2008

TIDAL MODELS: Definitions

m Distribution function

| Alexp(—aH) —exp(—aHy)] if H < Hy
fK(H)*{ 0 if H > Hy
Weinberg ASPC 1993, Heggie & Ramamani MNRAS 1995
1 X “Tidal approximation”
H= (& +3° + ) + r + 0 =
1 K
(r) = a{ Ho — [®c(r) + P (r)]} Or(r) = 50 (° —va®)  v=4-o5
0?

Tidal strength <+~ €= G

Concentration <« Wy = (0)

m Two domains separated by the boundary surface of the configuration,
defined by v (r) = 0, which is unknown a priori.

AY) .
Vi = 5(Wo) +e(l—v) for ¢» >0 (Poisson)
V2 = —9¢(1 — v)

for ¢ <0 (Laplace)

Elliptical PDE in a free boundary problem



TIDAL MODELS: Perturbation method Bertin & Varri ApJ 2008

m Tidal effect = (small) perturbation acting on the configuration described by
the spherical King models: € < 1

m Expansion of the general term of the series ¥y () in spherical harmonics
— one-dimensional (radial) Cauchy problems.

m This perturbation problem is singular!
The convergence radius of the asymptotic series vanishes # — 74, i.e. the
validity of the expansion breaks down when o = O(e).

- Introduction of an intermediate region (boundary layer)
- Asymptotic matching & la Van Dyke for (y(79) p(av)) and (¢p(12¥) qp(ext))

Van Dyke, Perturbation Methods in Fluid Mechanics, 1975
m Inspiration: rigidly rotating polytropes Chandrasekhar MNRAS 1933, ... Smith ApLSS 1975
m Full explicit solution to two orders in e.

m By induction, the k-th order solution ™) contains only the [ =0,2,..,2k
harmonics with even m.



TIDAL MODELS: Parameter space Varri & Bortin ApJ 2008

Two tidal sub-critical regimes

_J;e

Extension parameter: 6. = —
rJ

Weak deformation: d. << 1
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TIDAL MODELS: Parameter space Varri & Bortin ApJ 2008

Two tidal sub-critical regimes
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TIDAL MODELS: PI‘Opel‘tiES Varri & Bertin ApJ 2009

Wo=1,..,10 € = ecr (W) v=3
Deformation shaped by the

tidal potential:
- compression along 2 2
- elongation along & 3
i<y
-
11 _ (a/a)211/2 _ ‘ ‘ ‘ ‘ ‘
e=I (?/‘3)2]1/2 8§ 5 10 20 50 100 200
n=[1-(5/a) 5

a>b>¢é

€0, 70 = 0(61/2)
Non-trivial!

No isophotal twist!

Quadrupole moments
calculated analytically!

2
QP = Qijue+ Qij25 =
Jy Baiz; — r%6;5)p(r)d’r

0.
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Axisymmetric models with:

i) solid-body rotation
ii) differential rotation




RIGIDLY ROTATING MODELS: Definitions Varri & Bertin AIPC 2010

m If total angular momentum is non-vanishing, in the Maxwell-Boltzmann
distribution function:
F—-H=F—-uwJ,

where w represents the (solid-body) angular velocity of the system.

Landau & Lifchitz Stat Phys 1967

m Distribution function:

| Alexp(—aH) —exp (—aHy)] if H < H
fK(H)_{ 0 " H > Ho

H= %(va + 97+ 2 + Ceen + P Peen(r) = —%w2(w2 +y%)
P(r) = a{Ho — [®e(r) + Peen(r)]}

2
w

Concentration <« Wy = 9(0) Rotation strength <+ Yy = -——
47TGp0

m Formally, the same singular perturbation problem - reduced to 2D.

See Kormendy & Anand Ap&SS 1971, Vandervoort ApJ 1980 for other DFs



RIGIDLY ROTATING MODELS: Properties

Varri & Bertin AIPC 2010

Deformation shaped by
the centrifugal potential:

- “elongation”on (Z,9)

e= (1= (/)2
a>b

eo = O(x'/?)

Non-trivial!

Quadrupole moments
calculated
analytically!
ng/ngz =2
ny/ Quz =1
for every x and Wy

Log(p/po)

0.8




DIFFERENTIALLY ROTATING MODELS: Definitions Varri & Bertin in prep.

m New family in which internal rotation is rigid in the center but vanishes in
the outer parts of the system, where the truncation on the energy E is
effective.

wd,

I(B,J.) = B - o

I~H=FE-wJ. forlow [J;]
I~FE for high |J|

m Distribution function:

Fur (1) = Aexp(—aFEy){exp[—a (I — Eo)] —1+a(l — Ey)} if E<E
LA ! if B> Eo
Continuous truncation in phase space Wilson AJ 1975, Hunter AJ 1977

m Solution of the Poisson equation with iteration method:
. 9 _
VI = ——p (7,0,4)
po

1/)(f‘) = a[Eo — q’c(f‘)] sets the boundary Prendergast & Tomer AJ 1970



DIFFERENTIALLY ROTATING MODELS: General properties vesi & sertin in prep.

m Dimensionless parameters:

Concentration: Wo = 4(0)
2
Central solid-body rotation: =Y
47T(;p0
_ 1/c —2
Differential character: b = 9 a ” ,C
47T(;[)0

m For any Wy there exists a Wmaz, above which models cannot be constructed
because the procedure does not converge

m Non-monotonic polar eccentricity profile

m In the center, isotropy and solid-body rotation:

m In the outer parts, transition to tangential anisotropy and no rotation
m Rapidly rotating models exhibit a toroidal core iff (NSC!)

L2
ST LS S SN

c f5 o 18

1
37 RV 2 = 5eWor(5/2, Wo)

_2 >

[ aitoati
0

For toroidal cores in rapidly differentially rotating polytropes, see Stoeckely ApJ 1965, Geroyannis ApJ 1990



Log(p/po)

Wo =2 w/wmax S [0171}

<Uyp>

< by > (7,0) = 3wsin 07 + O(#*)



DIFFERENTIALLY ROTATING MODELS: Examples e 5 Wi o e

<Uyp>

Log(p/po)

Wo=2 @&/@mas € [0.1,1] < by > (#,0) = 30sin 07 + O(F?)



Varri & Bertin in prep.

DIFFERENTIALLY ROTATING MODELS: Examples

Moderate rotation

[N

©)@maz = 0.1 ©/Bmax = 0.2
Wo =2
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Rapid rotation

f
©/Dmaz = 0.4

Sections in meridional plane of isodensity surfaces



DIFFERENTIALLY ROTATING MODELS: Dynamical stability

t = Kora/|W| Wo=6
- Starlab portegies zuart ot a1 MiRAS 2001
- N = 65536 = 20%

- Isolated models 8
- Single mass, no stellar evolution

7 Models with moderate rotation are 9 |
stable °
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DIFFERENTIALLY ROTATING MODELS: Dynamical stability

= Starlab Portegies Zwart et al MNRAS 2001

- N = 65536

- Isolated models

- Single mass, no stellar evolution

7 Models with moderate rotation are
stable

7 Rapidly rotating models, even with
the toroidal core, can be stable
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DIFFERENTIALLY ROTATING MODELS: Dynamical stability

t = Kora/|W| Wo=6
- Starlab portegies zwart et a1 mirAs 2001
H 10%
- N = 65536 m 20%
o @ 30%
- Isolated models S E ggz;o
- Single mass, no stellar evolution /p\ 7%
7 Models with moderate rotation are 9 |
stable e

\1
i Rapidly rotating models, even with VAQMM/_WO
the toroidal core, can be stable

X Extreme rotation regime is unstable
I Consistent with Ostriker & Peebles N
(1973) criterion! ¢t = 0.14 4+ 0.03 3
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DIFFERENTIALLY ROTATING MODELS: Dynamical stability

- Starlab portegies zwart et a1 mirAs 2001

- N = 65536

- Isolated models

- Single mass, no stellar evolution

7 Models with moderate rotation are
stable

7 Rapidly rotating models, even with
the toroidal core, can be stable

X Extreme rotation regime is unstable

7 Consistent with Ostriker & Peebles
(1973) criterion! ¢t = 0.14 £ 0.03
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DIFFERENTIALLY ROTATING MODELS: Long term evolution

r01,r05,r10,r25,r50,r75,r90

5e+00

5e-01

5e-02

5e-03

Tit_rc(0)

- Starlab
- N = 16384
-Wo =6

- Moderate/rapid rotation
- Isolated models
- Single mass, no stellar evolution

- No primordial binaries

Rotation accelerates
the dynamical evolution
Hachisu PASJ 1979, Akyama & Sugimoto PASJ 1989,
Lagoute & Longaretti A&A 1996, Einsel & Spurzem

MNRAS 1999, Kim et al. MNRAS 2002, 2004



DIFFERENTIALLY ROTATING MODELS: Long term evolution
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- Moderate/rapid rotation
- Isolated models
- Single mass, no stellar evolution

- No primordial binaries

Rotation still present in the
post-core collapse phase



Conclusions

m Triaxial tidal models have been constructed as an extension of spherical
King models; intrinsic and projected properties have been given.

Bertin & Varri ApJ, 685, 1005-1019 (2008), Varri & Bertin ApJ, 703, 1911-1922 (2009)

m Extension of spherical King models to the case of internal solid-body
rotation has been performed.

Varri & Bertin AIPC, 1242, 148-155 (2010)

m Promising family of differentially rotating models has been proposed.

Varri & Bertin almost submitted

m Numerical study of dynamical stability and long term evolution in progress.

Varri et al in preparation

Future work

m Rotating models: N-body simulations with tidal boundary, multimass.

m Tidal models: comparison with N-body simulations of star clusters with
different degree of filling of the critical Hill surface.

m Comparison with observations: interpretation of observed flattening,
“extra-tidal light”, kinematics (rotation, anisotropy).

Alice Zocchi Master’s thesis: dynamical study of GCs in different relaxation

conditions, King vs. f(”) models Bertin & Stiavelli Rep.Prog.Phys. 1993, Bertin & Tremti ApJ 2003



