A survey of globular cluster kinematics in early-type galaxies

Vincenzo Pota (Swinburne)

- Duncan A. Forbes (Swinburne)
- Jean Brodie (UCSC)
- Aaron Romanowsky (UCSC)
- Jay Strader (Harvard)
- Chris Usher (Swinburne)
- Caroline Foster (Swinburne)
- Lee Spitler (Swinburne)

<u>Outline</u>

- Globular clusters kinematics
- Galaxy sample
- Results
- -Conclusions

Major merger scenario (Ashman & Zepf 1992)

The angular momentum would be transported to the outer regions during the merger. Blue GCs are expected to rotate faster then red GCs in the external regions.

The velocity dispersion for both the blue and the red decreases with the galactocentric radius (Bekki et al. 2005).

Multiphase dissipational collapse scenario (Forbes et al 1997)

Blue GCs show no rotation and a high-velocity dispersion, while the red GCs show some rotation depending on the degree of dissipation in the collapse.

Accretion scenario (Côté et al. 1998)

The blue GCs are expected to have radially biased orbits rather than isotropic or tangentially biased orbits, and are also expected to show no rotation (Richtler et al. 2004).

High resolution N-body simulations + semi-analytic models (Bekki et al. 2008).

 σ_{Blue} , σ_{Red} increase with galaxy luminosity

 $\sigma_{\rm Blue} / \sigma_{\rm Red} \sim 1$

 $V_{\rm rot}/\sigma < 0.3$

Subaru/Suprime-Cam

Field of view $\sim 34' \times 27'$

Keck/DEIMOS

Field of view of ~ $16' \times 5'$ with ~0.5 Å/px

Accuracy of 5-10 km s⁻¹

Galaxy ID	Hubble Type	$\frac{\rm V_{sys}}{\rm [km~s^{-1}]}$	R _{eff} [arcsec]	D [Mpc]	(m - M)	$M_{ m K}$ [mag]	$PA_{\rm phot}$ [degree]	$(b/a)_{\rm K}$	N _{GC}
NGC 0821	E6	1735	50	23.9	31.9	-24.5	30	0.62	68
NGC 1400	E0	558	29	26.4	32.1	-24.6	35	0.90	50
NGC 1407	E0	1779	70	28.8	32.3	-25.7	60	0.95	346
NGC 2768	S0	1373	64	22.4	31.7	-25.3	93	0.46	107
NGC 3377	E6	665	34	4.7	28.3	-24.6	47	0.58	110
NGC 5846	E0	1714	63	24.9	32.0	-25.5	35	0.92	195
$\operatorname{NGC} 7457$	S0	812	32	13.2	30.6	-24.1	125	0.54	21

30 DEIMOS masks

50 hours of Keck time

30 hours of Subaru time

<u>RESULTS:</u> Velocity vs Radius

Coverage at large radii for all the galaxies $5 < R_{eff} < 12$

<u>RESULTS</u>: Kinematic radial profiles

RESULTS: 2D Smoothed Velocity profiles

NGC 1407. Rotation produced by the metal-rich GCs close the major axis.

Evidence for a cold moving group of metal-poor (Romanowsky et al. 2009). Signature of a recent disruption of a disk galaxy?

No clear rotation at large radii.

RESULTS: GC kinematics vs. galaxy global properties II

Comparison with Bekki et al. 2008 (cosmological simulation) shows a good agreement but poor coverage at low masses.

Conclusions

• We doubled the GC kinematic sample in literature and new data are coming soon.

• Hint of rotation in the inner regions but NO rotation in the outskirt.

• We confirm the strong correlations of the host galaxy quantities ($L_{\chi_{,}} \sigma$ and M_{V}) with the velocity dispersion of all the GCs showing that it is an excellent tracer of the galaxy (and DM) halo.