TIDAL DISRUPTION OF GLOBULAR CLUSTERS IN DWARF GALAXIES

J. Peñarrubia

in collaboration with: M.Walker; G. Gilmore & S. Koposov

Santiago 2011

Hierarchical galaxy formation

Hierarchical galaxy formation

LMC: 13 GCs (Schommer 91)

Sgr: 9 GCs (Law & Majewski 2010)

For: 5 GCs (Mackey & Gilmore 2003)

Hierarchical galaxy formation

LMC: 13 GCs (Schommer 91)

Sgr: 9 GCs (Law & Majewski 2010)

For: 5 GCs (Mackey & Gilmore 2003)

only satellites with $L > 10^7 L_{sol}$ contribute to the host GC popul.

MISSING KEY INGREDIENT:

Evolution of GCs in satellites?

Tidal evolution of GCs in MW dSphs

GCs have been detected in **For** (5) and **Sgr** (4) dSphs

Table 1. Observational properties of the Fornax (Mateo 1998) and Sgr (Majewski et al. 2003) dSphs and their GCs (MacKey & Gilmore 2003).

(Peñarrubia, Walker & Gilmore 2009)

Name	Angular sep. (kpc)	[Fe/H]	R _c (pc)	Rt (pc)	$log_{10}(L)$ (L _{\odot})	$log_{10}[\rho_{\star}(0)]$ (M _O pc ⁻³)
For dSph	0.00	-1.3	400 ± 4	2078 ± 20	7.13 ± 0.2	-1.14 ± 0.20
F1	1.60	-2.25	10.0 ± 0.3	60 ± 20	4.07 ± 0.13	0.48 ± 0.07
F2	1.05	-1.65	5.8 ± 0.2	76 ± 18	4.76 ± 0.12	1.78 ± 0.07
F3	0.43	-2.25	1.6 ± 0.6	63 ± 15	5.06 ± 0.12	3.47 ± 0.07
F4	0.24	-1.65	1.8 ± 0.2	44 ± 10	4.69 ± 0.24	3.18 ± 0.07
F5	1.43	-2.25	1.4 ± 0.1	50 ± 12	4.76 ± 0.20	3.27 ± 0.07
Sgr dSph	0.00	[-0.5, -1.3]	1560 ± 20	12600 ± 20	7.24 ± 0.2	-2.96 ± 0.20
M54	0.00	-1.65	0.91 ± 0.04	59 ± 21	5.36 ± 0.08	4.45 ± 0.05
Terzan 7	2.68	-0.64	1.63 ± 0.12	23 ± 8	3.50 ± 0.10	1.97 ± 0.07
Terzan 8	4.40	-2.25	9.50 ± 0.72	66 ± 26	3.67 ± 0.14	0.72 ± 0.23
Arp 2	3.07	-1.65	13.67 ± 1.85	139 ± 49	3.59 ± 0.14	0.35 ± 0.25

Use Fornax and Sagittarius systems as a test case of tidal disruption of GCs in satellites

Tidal stripping of GCs

N-body (collisionless) sims of Fornax GCs on loop orbits.

• GCs sink to the dwarf centre in a Hubble time if initial apocentre < 1.5 kpc

• Only F1 can disrupt in the tidal field of Fornax ... but its orbit has to bring it **close** to the dwarf centre (!)

Disruption of GCs in triaxial DM haloes: Orbits

Orbits in triaxial potentials:

- 1. loops (centrophobic)
- 2. boxes
- 3. resonances
- 4. irregular (stochastic)

Disruption of GCs in triaxial DM haloes: **Orbits**

- Clusters that can be disrupted (e.g F1) will be disrupted after a few dynamical times (dSph: $t_{dyn} \sim 50$ —200 Myr) if they move on box, resonant or irregular orbits
- The fraction of non-loop orbits depends on (i) triaxiality and (ii) density profile

Disruption of GCs may be much more efficient in satellites than in the host

Disruption of GCs in triaxial DM haloes: Fl on an box orbit

Evolution of cluster F1

Orb. Plane X-Z r₀=0.5 kpc η = 0.8 (box orbit)

Disruption of GCs in triaxial DM haloes: Morphological signatures

Shells, isolated clumps, elongated over-densities... arise naturally from the disruption of a GC in a triaxial potential

They do not have a transient nature

Disruption of GCs in triaxial DM haloes: Kinematical signatures

box and resonant orbits

dSphs have flat velocity dispersion profiles

(e.g. Fornax $\sigma=10$ km/s)

Tidal debris associated to box and resonant orbits can appear *hotter / colder* than the underlying Fornax if the lineof-sight projection is *aligned / perpendicular* to the orbital plane

Observed substructures in dSphs

Future

- Collisional-Nbody simulations of GCs on triaxial potentials (F. Renaud)
- Distribution of cluster masses, densities and orbits in DM haloes with different triaxialities and density profiles
- Follow-up of accreted GCs in a MW-like galaxy

Disruption of GCs in triaxial DM haloes: Morphological signatures

Disruption of GCs in <mark>triaxial</mark> DM haloes: Kinematical signatures

loop orbits

dSph are non-rotating systems

The disruption of a GC on a loop orbit introduces velocity gradients in the host dwarf

note: velocity gradients in dSphs are often interepreted as a signature of tidal disruption