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The MF for globular clusters is something like a log—normal
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* Low mass part is more like a power law with slope 1
* Blue GCMF about the same as the red GCMF (Larsen +01; Wehner +08)
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The MF for young
clusters is a power
law with a slope of
about -2

Antenna Galaxy:
Zhang & Fall 1999
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The Problem

GC MFs look like young—cluster MFs with the low-mass members gone

— evaporation can cause the mass loss (McLaughlin & Fall 08)

However, GC MFs are independent of galactocentric radius (Kundu +99, Tamura
+06; ]ordan +07) whereas the evaporatlon rate depends on the tidal den51ty, which

depends on Rgal

— the outer regions of galaxies should have more low-mass GC remaining

* Gieles & Baumgardt 08: small clusters should survive in low tidal densities

— Radial GC orbits would help (Fall & Zhang 01), but they are not observed in M87 or the
Milky Way (Vesperini +03), NGC 5128 (Woodley +10), NGC 1407 (Romanowsky +09)



40

LIRSS SO TN BT BE R
- R=20.9" 5
L <m;>=22.69 mag]
3 cutoff
30 —
I i ]
© "\I‘
® L i
2 20 | IR
5 I [
z 1 \,
s - \ -
i dili
10 + -
o LAl y
18 20 22 24
I (mag)

Kundu +99:

40

30

20

10

LN R I R L L B B B LN AR L B B B

—
R=38.7" .

<m;>=22.60 mag]

cutoff

=
P S SR T SN YOS YN SN N M ST SR B

H
m =

20 22
I (mag)

24

40

30

20

10

GC MF in MS87 is independent of

galactocentric radius.
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Jordan +07 : GC MF for M87 and M49

using fields in nearby galaxies:

no change with distance
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The Problem

GC MFs look like young—cluster MFs with the low-mass members gone

— evaporation can cause the mass loss (McLaughlin & Fall 08)

However, GC MFs are independent of galactocentric radius (Kundu +99, Tamura
+06; ]ordan +07) whereas the evaporatlon rate depends on the tidal densrcy, which
depends on Rgal

— the outer regions of galaxies should have more low-mass GC remaining

* Gieles & Baumgardt 08: small clusters should survive in low tidal densities

— Radial GC orbits would help (Fall & Zhang 01), but they are not observed in M87 or the
Milky Way (Vesperini +03) , NGC 5128 (Woodley +10), NGC 1407 (Romanowsky +09)

Still, GCs with low half-mass densities have low MF peak masses, suggesting slower

evaporation at low GC density (Chandar +07; McLaughlin & Fall 08).



McLaughlin & Fall 08:
Milky Way

GCMFs separated into 3

groups according to density
at half-light radius. The peak
mass depends on density as
expected for dM/dt~p, 12,

The MFs are independent of position.

The fit is an evolved Schechter function.
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The Problem

GC MFs look like young—cluster MFs with the low-mass members gone

— evaporation can cause the mass loss (McLaughlin & Fall 08)

However, GC MFs are independent of galactocentric radius (Kundu +99, Tamura
+06; ]ordan +07) whereas the evaporatlon rate depends on the tidal dens1ty, which
depends on Rgal

— the outer regions of galaxies should have more low-mass GC remaining

Gieles & Baumgardt 08: small clusters should survive in low tidal densities

— Radial GC orbits would help (Fall & Zhang 01), but they are not observed in M87 or the
Milky Way (Vesperini +03), NGC 5128 (Woodley +10), NGC 1407 (Romanowsky +09)

Still, GCs with low half-mass densities have low MF peak masses, suggesting slower
evaporation at low GC density (Chandar +07; McLaughlin & Fall 08).

Another solution: the GC MF was peaked from a young age and the peak was
preserved during evaporation (Vesperini 00, de Grijs +05, Parmentier + 05-09).
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Initially peaked Mass Functions end up peaked after a Hubble time of evolution.
The equilibrium mass function is about the observed mass function.

Vesperini assumed an initial log-normal MF and an Rgal'3 * initial cluster distribution, and then

followed cluster disruption for 15 Gyr. Arrows show initial to final evolution in Mass-dispersion plane.



Models for Early Peaked MFs

— No low-mass clouds to form low mass clusters (Parmentier &

Gilmore 05, 07)

— Low star formation efficiency for low mass clusters so low mass
clusters disperse when the gas leaves (Parmentier + 08;

Baumgardt + 08)

— Low mass clusters are born with lower central concentration so

they evaporate more quickly (Vesperini & Zept 03)

e All of these require peculiar star formation
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Models for Early Peaked MFs

— GC formed with an M~ MF but in a dense environment, so
evaporation and collisions with clouds rapidly eroded and
destroyed them, producing a peaked MF early on (Elmegreen
2010)

If initial conditions matter, then we have to know how GCs formed



GC are forrning here:

HST

BUT old GCs have multiple populations

and often a clear connection to dwarf galaxies



0 2 4 1.2 14 1.6
LI | | |. | I LI % S
| q--ﬂ»-‘;ﬁ“' - 3 i j— __
O |- ‘ ] ]
— | | o B
e ! . o L -
© . d o B o
o 4 F~F ]
= T 1w | =
ol 1 o Fwrc :
o2 | ] v 8 » %
B £ .1 U I
Uaas_ 675 436 'la
O X ‘ il Ifxl ’.I!xlxl I E L | :d)l
o2 | - % 3
o2 *
o2
o2 o
N .
3 H &M
> 1.8
3 <} «
< o
N ':. I_O lW"FC b '
i catg || ]I|-"|'.':|.J'.|-'+‘-"|'..‘&'.'- N 'I\Jllll? 1 |S.|w| L |‘|‘
06 08 1 1.2 06 08 1 12
Vana_lau Vaoa_lau

Self-enrichment in () Cen: multiple main sequences & turnotffs (Bedin +04)

- Multiple MS means range of He abundance (D’Antona +02+08; Norris 04)

- Multiple subgiant branches means range of age (Milone et al. 2008) or
CNO abundance (Cassisi +08)



Ventura +09: the split subgiant branch in NGC 1851
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CNO enrichment

e (CNO enrichment is usually SO large that the progenitor stars
originally had to outnumber the cluster stars
— either the former cluster was much more massive (D’Ercole et al. 2008)

— or the GC was the core of a dark matter halo (e.g., dwart galaxy) which
collected ejecta from many other clusters (Bekki & Norris 2006).
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P = primordial (30% of stars in all GCs), same high O and low Na as halo field stars,
I = intermediate (50-70% of stars in GCs); E = extreme (not present in all GCs).

Position, kinematics and abundance allow GC classification into thick disk/bulge,
inner halo, and outer halo. The MF is independent of class: early peak is required.




D’Ercole + 08 model

First generation cluster assumed

Second generation forms from AGB ejecta plus pristine infall
— ond gen cluster more centrally concentrated
— Two He abundances (ejecta and pristine)
1%t gen stars lost from outer layer by evaporation and stellar
evolution, leaving a high proportion of pnd gen stars

Thermal motions eventually mix populations



Carrettat10 model: several steps to enrichment

10°M, DM+ gas fragment hits the early MW and forms 10°M_, of “precursor” stars
DM halo stripped away
SNe trigger 10° M, of “primordial” (1* gen) stars and enrich them to GC metallicities.
. before intermediate mass stars produce Aluminum
Winds and SNe from primordial (1*' gen) stars disperse the SF region
Most primordial stars drift off

Winds from 1* gen AGB stars (D’ Antona +04; Karakas +06) or fast-rotator stars
(Prantzos +06; Decressin +07) make a cooling flow and 2" generation cluster

60% of the GC mass today

SNe in the 2nd generation terminate SF

More massive clusters terminate earlier and enriched by only the most massive stars,
producing a 2" generation cluster with higher He enrichment.

Clusters forming in the disk are smaller and pre-enriched. They cannot self-enrich much.

Dwarf Sph galaxies are the same types of cosmological fragments, but further from the
MW and do not collide with it or trigger early star formation



Schaerer & Charbonnel 2011

* Halo stars with anomalous abundances compared to dissolved GCs
— Ifall GCs had multiple generations
— and the initial GC masses were x10 higher to account for the high pollution

— then an initial power law GC mass function would put far too many anomalous
stars into the MW halo compared to an initial log—normal GCMF.

* (the observed anomalous star fraction in the halo is only a few %)

* Suggest that the initial GCMF was log-normal

— Although, low mass GCs might not have had multiple generations (Bekki +11)
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Bekki +11 models AGB wind in

cluster of different masses.

M =2x10° M, cluster cannot hold /

in wind

M = 10° M, cluster holds in wind

and can make an generation stars

Key to multiple generations is the

much larger masses of old GCs
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Conroy & Spergel 2011: By | A TS
~ 1E 1F 7
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NASA, ESA

Ibata, Gilmore, Irwin 94

Sagittarius Dwart Galaxy
Possible associated GCs: Terzan 7, Terzan 8, Arp 2, M54, ...
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x = M giants from Majewski +03,04
dots = N—body model from Law +05



Casetti-Dinescu +09: Virgo Stellar Stream

may contain GC NGC 2419
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Smith +09: Four GCs lie in a halo star kinematic overdensity
metallicities: -2.22, -1.54, -1.58 and -1.65
NGC5466 is disrupting (Odenkirchen & Grebel 2004; Belokurov et al. 2006)

(see also Dinescu +99; Palma +02; Mackey & Gilmore 04)



Gao+07 find common streams for MW globular clusters, based on

common energy, angular momentum and orbit poles.

Streamf Counts Members’ ID (NGC)
5 3 Pal-10  7492% 6934
6 4 IC-1276 6715' Ter-7' Ter-8!
8 5 6517 6254 Pal-5% Pal-12 IC-1257
9 3 6402 6535 6864
10 4

5272 7089° 6838 Pal-10

e.g., stream 6 part of the Sgr dwarf stream

Suggest 20% of GCs are in common streams.



[s something like this the birthsite for the oldest GCs?

NGC 1569 — a Dwarf Irregular Galaxy



Young galames are

morphologlcally like

| dwarf irregulars, but

more massive

-~
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Elmegreen +09




Ho Il (NUV) =——2kpc Holl (blur) ===2kpc 1.37 18561

A local dwarf irregular galaxy is a good match to a clumpy young galaxy.



[Local Dwarf Irregulars VS Clumpy Young Galaxies

Clumpy young galaxies resemble local dwarf irregulars because:
— both have high gas fractions (e.g., Tacconi, Daddi, ...)
— both have high velocity dispersions relative to the rotation speed

— and ... L s/ Galaxy Size ~ H; / Galaxy Size ~ (0/ V)?

* both have big complexes relative to the galaxy size

* both have relatively thick disks
— both are irregular

* because of the relatively high gas mass and high 0/V
— both are relatively young!

Bekki +08 model GC formation in small galaxies at z~5 (on GC per
galaxy) and follow the galaxy SF histories, metallicities, and mergings
to reproduce today’s GC systems (no mass functions).

— Metal poor GCs form in low-mass galaxies z>6, metal rich GCs form slightly
later in mergers and isolated gas-rich galaxies.



Shapiro +10 suggested that thick-disk/ bulge GCs

formed in clumpy young galaxy disks (z~2)

Star formation in these systems is

intense, short-lived & high pressure.

The short timescale gives O-enhancement,

as also observed in z=2 survey galaxies and
at higher redshifts (Pettini +02; Halliday +08;
Quider +09)

The ages of red GCs are 9-12 Gyr in the

Milky Way (De Angeli +05, Mendel +07)

and 10 £ 2 Gyr in other galaxies (Puzia +06).
Comparable to the look-back time at z = 1.5—4

[Fe/H]
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Fe/H versus host galaxy mass
for red GC (red) and blue GC
(blue) in Virgo

black circle: z2SFG mean
open squares: MW and M31

dash lines: mass-metal

relation for different redshifts

Zinn '85 also suggested MW disk GC formed in “thick-disk” phase



Shapiro +10:

Assume the GC mass is limited to

Initial |

103 to 10°° times the cloud mass,
10°—

Assume the initial M2 mass function evolves by
102 —

evaporation with a constant mass loss per cluster

(Jordan +07).

dN/dM
|

i Evolved

/

Total remaining ~12 per clump, or ~100 per -

MW galaxy.

10° 104 10° 108
M (Mg



An Initial log—normal GCMEF from Early Dispersal

Clusters can be born with the usual M mass function up to the
sample-size limit (perhaps with an upper cut-off) and down to “zero”
mass, and constant efficiency

but the environment at redshift ~2 to 10 had higher turbulent gas
speeds, higher gas fractions, and higher gas densities.

Then low mass clusters are destroyed rapidl¥ by cloud collisions and
mutual cluster collisions

— Peak in the GCMF can form after 100-500 Myr of SF



Details

For disruption from collisions with cloud debris and other clusters:

dM/dt = -M/t,,, where this ™ pd/(ann) — EenVMy (Spitzer ’58)

* P, = internal cluster density; 2 _is the column density of collision partners, P, is
n
the space density of collision partners

* Gieles +06 assumed Y=0.6; if all cluster radii are about the same, then y=1

— Locally, €., makest, ~ 8 Gyr for M=10> M, (Gieles +06), but for high z
galaxies, 2 and P, were higher, making t,, ~ 0.5 Gyr or less at 10° M.

RESULT: Low mass clusters dispersed quickly in dense environment



8 ) ] ) ) I
= 7L dt=0005¢-005 ',

| dt=0.005,5=2

Slower

ay ~ @

Monte Carlo result with continuous formation 8 ° §
4
¥ i
4 destruction rate parameters ¢ (top to bottom) f
o -
| dit=0.005,E=1 ! -]
Y=0.62 (left) and Y=1 (right) ; [ yooe2 =7
g 5 X 2
=4l =
Plots show log M versus log age after ?,| E
10 Gyr of evolution in a steady state. 2
1 s
0
Upper limit increases by the size of sample ; ijmoaé: v
effect. \gg\S """"" 4
= =
B g
Lower limit increases by cluster sk
: _ 1/ -
destruction: M, = (age/&)""V ; i
7 dt = 0.0005, £ =01 "
Faster disruption (smaller &) produces a :
///w/ ————— @
larger Mp after 1 Gyr. g, -
B . .
Faster | I I
’ 1 2 f; 4 -2 - 0 1 2 .'; 4

|
na

|
[

Elmegreen 2010

log Age (Myr) log Age (Myr)



For a short burst of SF: 7| dt=00005§=05 4 B 7| 91 =00005,5 = ?'01
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Surnrnary

Origin of the GCMEF is still not understood

— A Hubble time of evaporation changes the GCMF, but does this account for the
whole GCMF or was the early MF also deficient in low-M clusters?

— Favoring the slow evaporation models:

* it happens anyway

* peak mass observed to depend on GC density
— Favoring early peak:

* universality
— with respect to position, metallicity, 1** gen/ ond gen ratio

* too high total mass for MW (x10) if self-enrichment gas comes from AGB stars
Models of the GCMF (GCs form in mergers, clumpy disks and dwarfs)

— Evaporation of an initial M2 power law or Schechter function from normal SF

— Early peak from abnormal star formation
* Jower initial cutoff in mass for GCs than for today’s clusters

* Jower efficiency for low mass clusters at high z than today

— Early peak from cluster disruption in abnormal environment

. high density & velocity dispersion of z>2 galaxies destroys low-M clusters quickly

The End



