The Formation and Gas Dynamics of the young SMC Cluster NGC 346

Linda J. Smith STScl/ESA

Dynamics of Low-Mass Stellar Systems, Santiago, Chile, 4-8 April 2011

Overview

NGC 346 appears to be a young cluster that has formed through hierarchical fragmentation

- Discuss stellar population and sub-cluster structure
- Discuss the dynamics of the ionized gas

what we can learn about cluster formation processes and the expulsion of residual gas

The Team:

Antonella Nota

STScI/ESA

Elena Sabbi

STScI/ESA

Mark Westmoquette

ESO

Linda J. Smith

STScI/ESA

Monica Tosi

INAF-Oss. Astronomico di Bologna

Jay S. Gallagher

University of Wisconsin

PDR HST/ACS V,I,Hα

LHA 115-N66:

- Most luminous H II region in the SMC
- •L(H α) ~ 60 x Orion
- •Filamentary structure
- Molecular gas is present

Rubio et al (2000): some CO remains in molecular clumps

The CMD (Sabbi et al. 2007, AJ, 133, 44)

NGC 346

O stars in NGC 346

IMF Analysis:

- •Salpeter (0.8-60 M_☉)
- Mass segregation is present
- •Half-mass radius = 9 pc
- •Total cluster mass = 4x 10⁵ M_☉

Pre-MS Spatial Distribution $(0.6 - 3 M_{\odot})$

Sub-Clusters

All 15 sub-clusters have an age of 3±1 Myr i.e. coeval

Sub-clusters embedded in nebulosity + coincide with clumps of molecular gas

Crossing time \sim 2 Myr (c = 10 km/s) \approx 1 crossing time old

Formation is probably due to hierarchical fragmentation of a molecular cloud (e.g. Bonnell et al. 2003). Supported by clustering behaviour of PMS stars (Schmeja et al. 2009) and crossing time.

Spitzer: 111 YSOs: all sub-clusters contain YSOs – SF is still ongoing. YSOs strongly concentrated in central cluster – also most massive.

Simon et al. (2007)

HST/ACS

The Dynamics of N66

- based on observations obtained with the echelle spectrograph UCLES on the AAT
- resolution = 6 km/s for H α and [O III]
- aim: map the gas motions over the nebula and study the stellar feedback and gas expulsion

Sub-clusters all have very similar velocities - not clear that they will coalesce to form one central cluster?

Gas Dynamics

- No evidence for large scale ionized gas motions
- Gas is not being expelled by combined effects of stellar winds in central cluster – why?
- Has hot gas leaked out ? (cf. 30 Dor, Lopez et al.2010)
 - may be expected in turbulent, clumpy ISM
- Are stellar winds much less effective at SMC metallicity? YES $L_{rad} \sim 10^3 10^5 L_{wind}$ for 5 NGC 346 O stars (Bouret et al. 2003)
 - Mass loss rates are >5 x lower than Galaxy
- Classical H II region expansion for N66 (radiation pressure may also play a role)
- Residual gas will not be removed until first supernova

Conclusions

- The young SMC cluster NGC 346 contains a rich population of premain sequence stars and still has residual gas present
- The cluster shows significant spatial substructure at least 15 coeval sub-clusters - strongly suggests formation due to hierarchical fragmentation of GMC
- NGC 346 ≈ 1 crossing time old hierarchical structure has not been erased yet
- Present day mass function is Salpeter and cluster is mass-segregated
- Ionized gas is quiescent see no evidence for stellar wind interactions
- Residual gas not been expelled in a crossing time
- Future evolution of NGC 346 will be driven by H II region dynamics until first SNe occurs. Star formation is ongoing and has not yet been quenched.
- The relative velocities of the sub-clusters suggest they will not merge to form a single cluster – timescale is ~ 7 Myr, well after the gas should be expelled by SNe.

The Mass Function

The MF slope is consistent with Salpeter between 0.8 and 60 M_☉.

Total mass = $4 \times 10^5 M_{\odot}$.

Sabbi et al. 2008, AJ, 135, 173