# White Dwarf - M Dwarf Binaries from the Sloan Digital Sky Survey

René Heller, Axel Schwope, Roy Østensen

#### **René Heller**

Astrophysikalisches Institut Potsdam

rheller@aip.de

Viña del Mar March 08, 2011

#### **The Sloan Digital Sky Survey**



www.sdss.org/gallery/gal\_photos.html

🕨 3200 - 9200 Å

- 2.5m telescope, 3° FoV
- inverse resolution  $R = \lambda/\Delta\lambda \approx 2000$
- > ≈ 3800 data points per spectrum
- each fiber covers a circle with 3" diameter on the celestial plane

#### **The Sloan Digital Sky Survey**



#### www.sdss.org/photos/spectro23

🕨 3200 - 9200 Å

- 2.5m telescope, 3° FoV
- inverse resolution  $R = \lambda/\Delta\lambda \approx 2000$
- > ≈ 3800 data points per spectrum
- each fiber covers a circle with 3" diameter on the celestial plane

#### The Sloan Digital Sky Survey

equatorial cordinates



> 1/3 sky-coverage

(1) this study, (2) Nebot Gómez-Morán et al. (2011, in prep.), (3) Rebassa-Mansergas et al. (2010), (4) Heller et al. (2009), (5) Augusteijn et al. (2008), (6) Silvestri et al. (2007), (7) Huegelmeyer et al. (2006), (8) Pourbaix et al. (2004), (9) Raymond et al. (2003), (10) Nilsson et al. (2006), (11) Wachter et al. (2003), (12) Eisenstein et al. (2006, white dwarf sample), (13) Eisenstein et al. (2006, sub dwarf sample), (14) Mukadam et al. (2004), (15) Kleiman et al. (2004), (16,17) Luyten (1997,1999), (18) Greenstein (1986)

(1) this study, (2) Nebot Gómez-Morán et al. (2011, in prep.), (3) Rebassa-Mansergas et al. (2010), (4) Heller et al. (2009), (5) Augusteijn et al. (2008), (6) Silvestri et al. (2007), (7) Huegelmeyer et al. (2006), (8) Pourbaix et al. (2004), (9) Raymond et al. (2003), (10) Nilsson et al. (2006), (11) Wachter et al. (2003), (12) Eisenstein et al. (2006, white dwarf sample), (13) Eisenstein et al. (2006, sub dwarf sample), (14) Mukadam et al. (2004), (15) Kleiman et al. (2004), (16,17) Luyten (1997,1999), (18) Greenstein (1986)

|                     |         |           |     |     | SDSS WD |     |     |     | -dM  WD-dM |     |     | <b>SDSSWD</b> |      |      | WD   |      |      |      |      |      |
|---------------------|---------|-----------|-----|-----|---------|-----|-----|-----|------------|-----|-----|---------------|------|------|------|------|------|------|------|------|
| SDSSJ               | α [°]   | δ[°]      | (1) | (2) | (3)     | (4) | (5) | (6) | (7)        | (8) | (9) | (10)          | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) |
| 000007.49-010910.90 | 0.03120 | -1.15302  | 0   | 0   | 0       | 0   | 1   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000152.08+000644.56 | 0.467   | 0.11236   | 1   | 0   | 1       | 1   | 1   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000250.64-045041.60 | 0.711   | -4.84488  | 0   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000356.93-050332.70 | 0.98720 | -5.05908  | 0   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000442.00-002011.60 | 1.175   | -0.33655  | 0   | 0   | 1       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000453.93+265420.40 | 1.22470 | 26.90566  | 0   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000504.91+243409.60 | 1.27045 | 24.56933  | 0   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000531.09-054343.24 | 1.37954 | -5.72866  | 1   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000559.87-054416.00 | 1.49945 | -5.73777  | 0   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000605.38-103302.30 | 1.52241 | -10.55063 | 0   | 0   | 0       | 0   | 1   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000611.93+003446.50 | 1.54970 | 0.57958   | 0   | 0   | 1       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000624.86-100024.70 | 1.60358 | -10.00686 | 0   | 0   | 0       | 0   | 1   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000651.91+284647.10 | 1.71629 | 28.77975  | 0   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000829.26+004645.20 | 2.12191 | 0.77922   | 0   | 0   | 0       | 0   | 0   | 0   | 0          | 1   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000829.92+273340.50 | 2.12466 | 27.56125  | 0   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000935.50+243251.20 | 2.39791 | 24.54755  | 0   | 1   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001029.87+003126.20 | 2.62445 | 0.52394   | 0   | 0   | 1       | 0   | 0   | 1   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001105.93-110859.00 | 2.77470 | -11.14972 | 0   | 0   | 0       | 0   | 1   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001247.18+001048.70 | 3.19658 | 0.18019   | 0   | 0   | 1       | 0   | 0   | 1   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001324.33-085021.40 | 3.35137 | -8.83927  | 0   | 0   | 0       | 0   | 0   | 1   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001339.10+001924.80 | 3.41291 | 0.32355   | 0   | 0   | 1       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 1    | 1    | 0    | 0    |
| 001359.39-110838.60 | 3.49745 | -11.14405 | 0   | 0   | 1       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001549.02+010937.30 | 3.95425 | 1.16036   | 0   | 0   | 1       | 0   | 0   | 1   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001726.63-002451.10 | 4.36095 | -0.41419  | 0   | 0   | 1       | 0   | 0   | 1   | 0          | 0   | 1   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001733.59+004030.43 | 4.38995 | 0.67511   | 1   | 0   | 1       | 1   | 0   | 1   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001742.43+004137.28 | 4.42679 | 0.69366   | 1   | 0   | 0       | 0   | 0   | 0   | 0          | 0   | 0   | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001749.24-000955.58 | 4.45516 | -0.16541  | 1   | 0   | 1       | 1   | 1   | 1   | 0          | 0   | 1   | 0             | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    |
|                     |         |           |     |     |         |     |     |     |            |     |     |               |      |      |      |      |      |      |      |      |

> 3000 WD-dM candidates (not necessarily from the SDSS)

(1) this study, (2) Nebot Gómez-Morán et al. (2011, in prep.), (3) Rebassa-Mansergas et al. (2010), (4) Heller et al. (2009), (5) Augusteijn et al. (2008), (6) Silvestri et al. (2007), (7) Huegelmeyer et al. (2006), (8) Pourbaix et al. (2004), (9) Raymond et al. (2003), (10) Nilsson et al. (2006), (11) Wachter et al. 2230 Forsthem 2006, white dwarf sample), (13) Eisenstein et al. (2006, sub dwarf sample), (14) Mukadam et al. (2004), (15) Kleiman et al. (2004), (16,17) Luyten (1007,1999), (18) Greenstein (1986) have SDSS spectra, spectra, spectra (1986)

|                     |         |           |     |     |     | <b>D</b> 23 |     | D-a        |     |     | -   |      |      |      | 2D22 |      |      |      | WD   |      |
|---------------------|---------|-----------|-----|-----|-----|-------------|-----|------------|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| SDSSJ               | a [°]   | δ [°]     | (1) | (2) | (3) | (4)         | (5) | (6)        | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) |
| 000007.49-010910.90 | 0.03120 | -1.15302  | 0   | 0   | 0   | 0           | 1   | 0          | 0   | •6  | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000152.08+000644.56 | 0.467   | mav       | 71  | )P  |     |             |     |            | X/  | 0   | 0   | 0    | run  |      |      | 0    | 0    | 0    | 0    | 0    |
| 000250.64-045041.60 | 0.711   | -4.84488  | 0   |     |     | Y           |     | 0          | 0   | 0   | 0   |      | 0    | 0    |      | 0    | 0    | 0    | 0    | 0    |
| 000356.93-050332.70 | 0.98720 | -5.05908  | 0   | 1   | 0   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000442.00-002011.60 | 1.175   | -0.33655  | 0   | 0   | 1   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000453.93+265420.42 | 1.224   | 26.90566  | 0   | 1-  |     | 0           | - 0 | <b>V</b> / | )   | 0   | 21  |      | 10   |      |      |      | 0    | 0    | 0    | 0    |
| 000504.91+243409.6  | 1. 70-5 | 74.5223   |     |     |     | JĘ          | 0   |            | )   | 0   |     | Yo   |      |      |      |      | S.   | 0    | 0    | 0    |
| 000531.09-054343.24 | 1.37954 | -5.7 806  | 1   | 1   | 0   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000559.87-054416.00 | 1.49945 | -5.73777  | 0   | 1   | 0   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000605.38-103302.30 | 1.52241 | -10.55063 | 0   | 0   | 0   | 0           | 1   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000611.93+003446.50 | 1.54970 | 0.57958   | 0   | 0   | 1   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000624.86-100024.70 | 1.60358 | -10.00686 | 0   | 0   | 0   | 0           | 1   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000651.91+284647.10 | 1.71629 | 28.77975  | 0   | 1   | 0   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000829.26+004645.20 | 2.12191 | 0.77922   | 0   | 0   | 0   | 0           | 0   | 0          | 0   | 1   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000829.92+273340.50 | 2.12466 | 27.56125  | 0   | 1   | 0   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000935.50+243251.20 | 2.39791 | 24.54755  | 0   | 1   | 0   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001029.87+003126.20 | 2.62445 | 0.52394   | 0   | 0   | 1   | 0           | 0   | 1          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001105.93-110859.00 | 2.77470 | -11.14972 | 0   | 0   | 0   | 0           | 1   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001247.18+001048.70 | 3.19658 | 0.18019   | 0   | 0   | 1   | 0           | 0   | 1          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001324.33-085021.40 | 3.35137 | -8.83927  | 0   | 0   | 0   | 0           | 0   | 1          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001339.10+001924.80 | 3.41291 | 0.32355   | 0   | 0   | 1   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 0    | 0    |
| 001359.39-110838.60 | 3.49745 | -11.14405 | 0   | 0   | 1   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001549.02+010937.30 | 3.95425 | 1.16036   | 0   | 0   | 1   | 0           | 0   | 1          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001726.63-002451.10 | 4.36095 | -0.41419  | 0   | 0   | 1   | 0           | 0   | 1          | 0   | 0   | 1   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001733.59+004030.43 | 4.38995 | 0.67511   | 1   | 0   | 1   | 1           | 0   | 1          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001742.43+004137.28 | 4.42679 | 0.69366   | 1   | 0   | 0   | 0           | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001749.24-000955.58 | 4.45516 | -0.16541  | 1   | 0   | 1   | 1           | 1   | 1          | 0   | 0   | 1   | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    |
|                     |         |           |     |     |     |             |     |            |     |     |     |      |      |      |      |      |      |      |      |      |

> 3000 WD-dM candidates (not necessarily from the SDSS)

(1) this study, (2) Nebot Gómez-Morán et al. (2011, in prep.), (3) Rebassa-Mansergas et al. (2010), (4) Heller et al. (2009), (5) Augusteijn et al. (2008), (6) Silvestri et al. (2007), (7) Huegelmeyer et al. (2006), (8) Pourbaix et al. (2004), (9) Raymond et al. (2003), (10) Nilsson et al. (2006), (11) Wachter et al S2002), (12) Eise istein et al. (606, white dwarf sample), (13) Eisenstein et al. (2006, sub dwarf **Sugge**, **Stjons** of al. (2004), (15) Kleiman et al. (2004), (16,17) Luyten (1997,1999), (18) Greenstein (1986) SDSS WsD-dM candidates

WD

| SDSSJ               | $\alpha$ [°] | δ[°]      | (1) | (2) | (3) | (4)           | (5) | (6) | (7) | (8)  | (9)      | (10) | (11)     | (12) | (13) | (14) | (15) | (16) | (17) | (18) |
|---------------------|--------------|-----------|-----|-----|-----|---------------|-----|-----|-----|------|----------|------|----------|------|------|------|------|------|------|------|
| 000007.49-010910.90 | 0.03120      | -1.15302  | 0   | 0   | 0   | 0             | 1   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000152.08+000644.56 | 0.467        | 0.11236   | 1   | - 0 |     |               |     | 0   | 0   | 9    | 0        | _0   | 01 '     | 0    |      | 0    | 0    | 0    | 0    | 0    |
| 000250.64-045041.60 | 0.711        |           | - 0 | VIC |     | CU            |     |     |     |      |          |      |          | 0    |      | 0    | 0    | 0    | 0    | 0    |
| 000356.93-050332.70 | 0.98720      | -5.05908  | 0   | 1   | 0   | 0             | 0   | 0   | 0   | 0    | 0        | Ō    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000442.00-002011.60 | 1.175        | -0.33655  | 0   | 0   | 1   | 0             | 0   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000453.93+265420.40 | 1.22470      | 26.90566  | 0   | 1   | 0   | 0             | 0   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000504.91+243409.60 | 1.27045      | 24.56933  | 0   | 21  | ۶Lz | n             |     | KŴ7 |     |      | 0        |      | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000531.09-054343.24 | 1.37954      | -5.72866  | 1   |     | ∕Û  |               |     |     |     | 0    | A'       |      | •0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000559.87-054416.00 | 1.49945      | -5.73777  | 0   | 1   | 0   | 0             | 0   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000605.38-103302.30 | 1.52241      | -10.55063 | 0   | 0   | 0   | 0             | 1   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000611.93+003446.50 | 1.54970      | 0.57958   | 0   | 0   | 1   | 0             | 0   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000624.86-100024.70 | 1.60358      | -10.00686 | 0   | 0   | 0   | _ <b>1</b> 21 | 1   |     |     |      | 0        |      | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000651.91+284647.10 | 1.71629      | 28.77975  | 0   | rr  | 1e  | D D           | P1  | ru  | NO  | 11   |          |      | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000829.26+004645.20 | 2.12191      | 0.77922   | 0   | -0  |     | ×             |     | 0   | -0C | 64 A |          | 90   | <b>0</b> | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000829.92+273340.50 | 2.12466      | 27.56125  | 0   | 1   | 0   | 0             | 0   | 0   | 0   | 0 4  | <b>0</b> | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 000935.50+243251.20 | 2.39791      | 24.54755  | 0   | 1   | 0   | 0             | 0   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001029.87+003126.20 | 2.62445      | 0.52394   | 0   | 0   | 1   | 0             | 0   | 1   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001105.93-110859.00 | 2.77470      | -11.14972 | 0   | 0   | 0   | 0             | 1   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001247.18+001048.70 | 3.19658      | 0.18019   | 0   | 0   | 1   | 0             | 0   | 1   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001324.33-085021.40 | 3.35137      | -8.83927  | 0   | 0   | 0   | 0             | 0   | 1   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001339.10+001924.80 | 3.41291      | 0.32355   | 0   | 0   | 1   | 0             | 0   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 1    | 1    | 0    | 0    |
| 001359.39-110838.60 | 3.49745      | -11.14405 | 0   | 0   | 1   | 0             | 0   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001549.02+010937.30 | 3.95425      | 1.16036   | 0   | 0   | 1   | 0             | 0   | 1   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001726.63-002451.10 | 4.36095      | -0.41419  | 0   | 0   | 1   | 0             | 0   | 1   | 0   | 0    | 1        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001733.59+004030.43 | 4.38995      | 0.67511   | 1   | 0   | 1   | 1             | 0   | 1   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001742.43+004137.28 | 4.42679      | 0.69366   | 1   | 0   | 0   | 0             | 0   | 0   | 0   | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 001749.24-000955.58 | 4.45516      | -0.16541  | 1   | 0   | 1   | 1             | 1   | 1   | 0   | 0    | 1        | 0    | 0        | 0    | 0    | 0    | 1    | 0    | 0    | 0    |
|                     |              |           |     |     |     |               |     |     |     |      |          |      |          |      |      |      |      |      |      |      |
|                     |              |           |     |     |     |               |     | -   |     |      |          |      |          |      |      |      |      |      |      |      |

> 3000 W D-dNI candidates (not necessarily from

#### Sample Setup: Disentangling Duplicates

#### Sample Setup: Disentangling Duplicates

(1) Wachter et al. (2003), (2) this study, (3) Silvestri et al. (2007), (4) Rebassa-Mansergas et al. (2010), (5) Kleiman et al. (2004), (6) Augusteijn et al. (2008), (7) Nebot Gómez-Morán et al. (2011, in prep.)

| Plate | MJD   | Fiber | official SDSS identifier SDSSJ | published before as                                                                                                                      |
|-------|-------|-------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 2232  | 53827 | 584   | 122630.86+303852.5             | $122630.80 + 303852.00^{1}, 122630.86 + 303852.5^{4}, 122630.87 + 303852.6^{3}, 122630.86 + 303852.58^{2}$                               |
| 329   | 52056 | 615   | 114947.95-012044.5             | $114948.00-012044.0^3$ , $114947.99-012043.9^4$ , $114948.00-012044.51^2$                                                                |
| 329   | 52056 | 542   | 114913.52-014728.4             | 114913.44-014728.50 <sup>2</sup> , 114913.53-014728.6 <sup>3,5</sup> , SDSSJ114913.52-014728.64                                          |
| 329   | 52056 | 542   | 114914.72-014726.6             | 114914.74-014726.70 <sup>1,*</sup>                                                                                                       |
| 971   | 52644 | 303   | 122105.34+492720.5             | $122105.27 + 492720.52^2$ , $122105.35 + 492720.6^3$ , $122105.34 + 492720.5^4$ , $122106.00 + 492710.0^1$                               |
| 1646  | 53498 | 177   | 144600.72+332849.9             | $144600.72 + 332849.94^2$ , $144600.00 + 332848.00^1$ , $144600.72 + 332849.9^4$                                                         |
| 540   | 51996 | 551   | 151212.08+015231.3             | 151212.00+015231.40 <sup>2</sup> , 151212.80+015230.5 <sup>3,*</sup> , 151212.07+015230.4 <sup>4</sup> , 151212.08+015230.5 <sup>5</sup> |
| 2449  | 54271 | 420   | 152425.22+504010.0             | $152425.00 + 504006.00^{1}, 152425.20 + 504009.84^{2}, 152425.21 + 504009.8^{3,4}, 152425.21 + 504009.7^{7}$                             |
| 627   | 52144 | 589   | 163708.04+474600.1             | $163708.04 + 474600.1^3$ , $163708.16 + 474559.75^3$ , $163708.04 + 474559.9^4$                                                          |
| 1852  | 53534 | 510   |                                | 160900.10+225934.07, 160860.00+225934.10                                                                                                 |
| 1684  | 53239 | 81    |                                | 162448.00+321654.00, 162449.00+321702.00                                                                                                 |
| 3297  | 54941 | 53    |                                | 151906.00+500700.00, 151905.96+500702.89                                                                                                 |

#### Sample Setup: Disentangling Duplicates

#### SDSSJ151212.08+015231.4 (DR7) as an example







SDSS DR8 SDSSJ151211.99+015231.40 RA=228.05033, DEC=1.8751296 (this study)







|                              |                       |                 |       | A PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------|-----------------------|-----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a total of the bit of the    | the same to be a set  | a second second |       | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | Long Brit Land Land   | 10.04           | 10000 | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a second and a second second |                       | A STATEMENT     | 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | and the second of the | 1 1 1 1 1 1     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | No pro prosente       |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Harris Harris                | the same sectors      |                 |       | Personal Per |
| CALL CONTRACTOR OF THE       | 11111                 |                 |       | PROPERTY OF THE OWNER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | 1111                  |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11111111111                  |                       | 100             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                       |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                       |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                       |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                       | 0 0 0           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |









Survey: sdss Program: legacy Target: QSO\_SKIRT RA=4.38997, Dec=0.67512, Plate=389, Fiber=614, MJD=51794 cz=-6+/-7 km/s Class=STAR M4 No warnings.



| Designation             | d <sub>proj</sub> ["] | $\overline{d}$ [pc] | d <sub>proj</sub> [AU] | d <sub>proj</sub> [AU] | $M_{\rm M}  [M_\odot]$ | $P[yr] \gtrsim$ | Pcorr [yr] |
|-------------------------|-----------------------|---------------------|------------------------|------------------------|------------------------|-----------------|------------|
| J0017-0009              | 1.4                   | 500                 | 700                    | 1000                   | 0.46                   | 16 000          | 33 000     |
| J0122+1542              | 1.0                   | 300                 | 300                    | 500                    | 0.17                   | 6500            | 13 000     |
| J0151-0800              | 1.0                   | 350                 | 350                    | 600                    | 0.17                   | 8000            | 16 000     |
| J0215+1418              | 0.9                   | 700                 | 600                    | 900                    | 0.27                   | 16 000          | 30 000     |
| J0249+3342              | 1.4                   | 500                 | 700                    | 1200                   | 0.17                   | 23 000          | 45 000     |
| J0348-0614              | 1.1                   | 500                 | 600                    | 900                    | 0.17                   | 16000           | 31 000     |
| J0725+4145              | 1.3                   | 400                 | 500                    | 900                    | 0.17                   | 15 000          | 29 000     |
| J0729+4304              | 1.5                   | 150                 | 250                    | 400                    | 0.12                   | 5000            | 10 000     |
| J0739+2743              | 0.6                   | 700                 | 350                    | 600                    | 0.17                   | 8000            | 16 000     |
| J0740+3859              | 1.1                   | 300                 | 350                    | 600                    | 0.12                   | 8000            | 15 000     |
| J0741+3808              | 0.9                   | 300                 | 250                    | 400                    | 0.17                   | 5000            | 9000       |
| J0752+4332              | 1.3                   | 600                 | 800                    | 1200                   | 0.18                   | 23 000          | 46 000     |
| J0800+5002              | 1.1                   | 700                 | 800                    | 1200                   | 0.27                   | 22000           | 44 000     |
| J0801+2216              | 1.3                   | 500                 | 700                    | 1100                   | 0.17                   | 20000           | 40 000     |
| J0806+4035              | 1.2                   | 350                 | 450                    | 700                    | 0.17                   | 11 000          | 21 000     |
| J0809+1251              | 1.3                   | 400                 | 500                    | 800                    | 0.17                   | 14 000          | 27 000     |
| J0813+2152              | 0.9                   | 900                 | 800                    | 1300                   | 0.18                   | 28 000          | 55 000     |
| J0829+2701              | 1.4                   | 1000                | 1400                   | 2200                   | 0.27                   | 55 000          | 110 000    |
| J0845+2348              | 1.1                   | 1400                | 1400                   | 2200                   | 0.46                   | 50 000          | 100 000    |
| J0904+5621 <sup>†</sup> | 1.5                   | 200                 | 300                    | 450                    | 0.10                   | 6000            | 12 000     |
| J0931+3941              | 1.4                   | 350                 | 500                    | 800                    | 0.17                   | 13 000          | 26 000     |
| J0939+5729              | 1.3                   | 250                 | 300                    | 500                    | 0.17                   | 6000            | 12 000     |
| J0942+1846              | 1.3                   | 600                 | 700                    | 1200                   | 0.17                   | 23 000          | 45 000     |
| J1001+3203              | 1.3                   | 250                 | 350                    | 500                    | 0.17                   | 7000            | 13 000     |
| J1006+5633              | 1.4                   | 1200                | 1700                   | 2700                   | 0.46                   | 70 000          | 135 000    |
| J1032+3722              | 1.3                   | 350                 | 450                    | 700                    | 0.17                   | 10 000          | 20000      |
| J1127-0028 <sup>†</sup> | 1.5                   | 200                 | 250                    | 400                    | 0.10                   | 4500            | 9000       |
| J1127+4249              | 1.2                   | 350                 | 400                    | 600                    | 0.12                   | 9000            | 18 000     |
| J1205+0312              | 1.4                   | 250                 | 400                    | 600                    | 0.17                   | 8500            | 17 000     |
| J1209+6510 <sup>†</sup> | 1.4                   | 250                 | 350                    | 500                    | 0.10                   | 7500            | 14 000     |
| J1210+0549              | 1.4                   | 350                 | 500                    | 800                    | 0.17                   | 12 000          | 24 000     |
| J1216+4328              | 1.5                   | 900                 | 1300                   | 2000                   | 0.46                   | 46 000          | 90 000     |
| J1242+4506              | 1.5                   | 450                 | 700                    | 1100                   | 0.17                   | 20 000          | 40 000     |
| J1253+5813              | 1.4                   | 400                 | 600                    | 900                    | 0.27                   | 14 000          | 28 000     |
| J1304+1449              | 1.3                   | 500                 | 600                    | 1000                   | 0.17                   | 18 000          | 35 000     |
| J1347+4129              | 1.3                   | 1200                | 1600                   | 2500                   | 0.46                   | 65 000          | 125 000    |
| J1456+4824              | 1.4                   | 450                 | 600                    | 1000                   | 0.17                   | 18 000          | 35 000     |
| J1606+4217              | 1.1                   | 500                 | 600                    | 900                    | 0.17                   | 17 000          | 35 000     |
| J1630+1302              | 1.4                   | 600                 | 900                    | 1420                   | 0.17                   | 31 000          | 60 000     |
| J1744+2442              | 1.4                   | 1100                | 1500                   | 2400                   | 0.46                   | 55 000          | 115 000    |
| J2200-0715 <sup>†</sup> | 1.5                   | 200                 | 250                    | 400                    | 0.10                   | 5000            | 10 000     |

#### from 636 objects (Heller et al. 2009)

#### 41 optically resolved binaries

from ≈2000 objects in the SDSS WD-dM library (Heller et al. 2011, in prep.)

≈130 optically resolved binaries

| Designation | d <sub>proj</sub> ["] | <i>d</i> [pc] | d <sub>proj</sub> [AU] | d <sub>proj</sub> [AU] | $M_{\rm M}[M_\odot]$ | <i>P</i> [yr] ≥ | Pcorr [yr] |
|-------------|-----------------------|---------------|------------------------|------------------------|----------------------|-----------------|------------|
| J0017-0009  | 1.4                   | 500           | 700                    | 1000                   | 0.46                 | 16 000          | 33 000     |
| J0122+1542  | 1.0                   | 300           | 300                    | 500                    | 0.17                 | 6500            | 13 000     |
| J0151-0800  | 1.0                   | 350           | 350                    | 600                    | 0.17                 | 8000            | 16 000     |
| J0215+1418  | 0.9                   | 700           | 600                    | 900                    | 0.27                 | 16 000          | 30 000     |
| J0249+3342  | 1.4                   | 500           | 700                    | 1200                   | 0.17                 | 23 000          | 45 000     |
| J0348-0614  | 1.1                   | 500           | 600                    | 900                    | 0.17                 | 16000           | 31 000     |
| J0725+4145  | 1.3                   | 400           | 500                    | 900                    | 0.17                 | 15 000          | 29 000     |
| J0729+4304  | 1.5                   | 150           | 250                    | 400                    | 0.12                 | 5000            | 10 000     |
| J0739+2743  | 0.6                   | 700           | 350                    | 600                    | 0.17                 | 8000            | 16 000     |
| J0740+3859  | 1.1                   | 300           | 350                    | 600                    | 0.12                 | 8000            | 15 000     |
| J0741+3808  | 0.9                   | 300           | 250                    | 400                    | 0.17                 | 5000            | 9000       |
| J0752+4332  | 1.3                   | 600           | 800                    | 1200                   | 0.18                 | 23 000          | 46 000     |
| J0800+5002  | 1.1                   | 700           | 800                    | 1200                   | 0.27                 | 22 000          | 44 000     |
| J0801+2216  | 1.3                   | 500           | 700                    | 1100                   | 0.17                 | 20000           | 40 000     |
| J0806+4035  | 1.2                   | 350           | 450                    | 700                    | 0.17                 | 11000           | 21 000     |
| J0809+1251  | 1.3                   | 400           | 500                    | 800                    | 0.17                 | 14000           | 27 000     |
| J0813+2152  | 0.9                   | 900           | 800                    | 1300                   | 0.18                 | 28 000          | 55 000     |
| J0829+2701  | 1.4                   | 1000          | 1400                   | 2200                   | 0.27                 | 55 000          | 110 000    |
| J0845+2348  | 1.1                   | 1400          | 1400                   | 2200                   | 0.46                 | 50 000          | 100 000    |
| J0904+5621° | 1.5                   | 200           | 300                    | 450                    | 0.10                 | 6000            | 12 000     |

| Designation             | d <sub>proj</sub> ["] | $\overline{d}$ [pc] | d <sub>proj</sub> [AU] | d <sub>proj</sub> [AU] | $M_{\rm M} \left[ M_\odot \right]$ | $P[yr] \gtrsim$ | Pcorr [yr] |
|-------------------------|-----------------------|---------------------|------------------------|------------------------|------------------------------------|-----------------|------------|
| J0017-0009              | 1.4                   | 500                 | 700                    | 1000                   | 0.46                               | 16 000          | 33 000     |
| J0122+1542              | 1.0                   | 300                 | 300                    | 500                    | 0.17                               | 6500            | 13 000     |
| J0151-0800              | 1.0                   | 350                 | 350                    | 600                    | 0.17                               | 8000            | 16000      |
| J0215+1418              | 0.9                   | 700                 | 600                    | 900                    | 0.27                               | 16 000          | 30 000     |
| J0249+3342              | 1.4                   | 500                 | 700                    | 1200                   | 0.17                               | 23 000          | 45 000     |
| J0348-0614              | 1.1                   | 500                 | 600                    | 900                    | 0.17                               | 16000           | 31 000     |
| J0725+4145              | 1.3                   | 400                 | 500                    | 900                    | 0.17                               | 15 000          | 29 000     |
| J0729+4304              | 1.5                   | 150                 | 250                    | 400                    | 0.12                               | 5000            | 10 000     |
| J0739+2743              | 0.6                   | 700                 | 350                    | 600                    | 0.17                               | 8000            | 16 000     |
| J0740+3859              | 1.1                   | 300                 | 350                    | 600                    | 0.12                               | 8000            | 15 000     |
| J0741+3808              | 0.9                   | 300                 | 250                    | 400                    | 0.17                               | 5000            | 9000       |
| J0752+4332              | 1.3                   | 600                 | 800                    | 1200                   | 0.18                               | 23 000          | 46 000     |
| J0800+5002              | 1.1                   | 700                 | 800                    | 1200                   | 0.27                               | 22000           | 44 000     |
| J0801+2216              | 1.3                   | 500                 | 700                    | 1100                   | 0.17                               | 20000           | 40 000     |
| J0806+4035              | 1.2                   | 350                 | 450                    | 700                    | 0.17                               | 11 000          | 21 000     |
| J0809+1251              | 1.3                   | 400                 | 500                    | 800                    | 0.17                               | 14000           | 27000      |
| J0813+2152              | 0.9                   | 900                 | 800                    | 1300                   | 0.18                               | 28 000          | 55 000     |
| J0829+2701              | 1.4                   | 1000                | 1400                   | 2200                   | 0.27                               | 55 000          | 110 000    |
| J0845+2348              | 1.1                   | 1400                | 1400                   | 2200                   | 0.46                               | 50 000          | 100 000    |
| J0904+5621 <sup>†</sup> | 1.5                   | 200                 | 300                    | 450                    | 0.10                               | 6000            | 12 000     |

 $M_{WD} = 0.6 M_{Sun}$  assumed

| Designation             | d <sub>proj</sub> ["] | $\overline{d}$ [pc] | d <sub>proj</sub> [AU] | d <sub>proj</sub> [AU] | $M_{\rm M}  [M_\odot]$ | $P[yr] \gtrsim$ | P <sup>corr</sup> [yr] |
|-------------------------|-----------------------|---------------------|------------------------|------------------------|------------------------|-----------------|------------------------|
| J0017-0009              | 1.4                   | 500                 | 700                    | 1000                   | 0.46                   | 16 000          | 33 000                 |
| J0122+1542              | 1.0                   | 300                 | 300                    | 500                    | 0.17                   | 6500            | 13 000                 |
| J0151-0800              | 1.0                   | 350                 | 350                    | 600                    | 0.17                   | 8000            | 16000                  |
| J0215+1418              | 0.9                   | 700                 | 600                    | 900                    | 0.27                   | 16 000          | 30 000                 |
| J0249+3342              | 1.4                   | 500                 | 700                    | 1200                   | 0.17                   | 23 000          | 45 000                 |
| J0348-0614              | 1.1                   | 500                 | 600                    | 900                    | 0.17                   | 16000           | 31 000                 |
| J0725+4145              | 1.3                   | 400                 | 500                    | 900                    | 0.17                   | 15 000          | 29 000                 |
| J0729+4304              | 1.5                   | 150                 | 250                    | 400                    | 0.12                   | 5000            | 10 000                 |
| J0739+2743              | 0.6                   | 700                 | 350                    | 600                    | 0.17                   | 8000            | 16 000                 |
| J0740+3859              | 1.1                   | 300                 | 350                    | 600                    | 0.12                   | 8000            | 15 000                 |
| J0741+3808              | 0.9                   | 300                 | 250                    | 400                    | 0.17                   | 5000            | 9000                   |
| J0752+4332              | 1.3                   | 600                 | 800                    | 1200                   | 0.18                   | 23 000          | 46 000                 |
| J0800+5002              | 1.1                   | 700                 | 800                    | 1200                   | 0.27                   | 22 000          | 44 000                 |
| J0801+2216              | 1.3                   | 500                 | 700                    | 1100                   | 0.17                   | 20 000          | 40 000                 |
| J0806+4035              | 1.2                   | 350                 | 450                    | 700                    | 0.17                   | 11 000          | 21 000                 |
| J0809+1251              | 1.3                   | 400                 | 500                    | 800                    | 0.17                   | 14 000          | 27 000                 |
| J0813+2152              | 0.9                   | 900                 | 800                    | 1300                   | 0.18                   | 28 000          | 55 000                 |
| J0829+2701              | 1.4                   | 1000                | 1400                   | 2200                   | 0.27                   | 55 000          | 110 000                |
| J0845+2348              | 1.1                   | 1400                | 1400                   | 2200                   | 0.46                   | 50 000          | 100 000                |
| J0904+5621 <sup>†</sup> | 1.5                   | 200                 | 300                    | 450                    | 0.10                   | 6000            | 12 000                 |







Koester (2001, A&A, 378, 556)

Hauschildt & Baron (1999, 7CoAM, 109, 41)





#### Spectral Decomposition Radial Velocities













no additional  $M_{WD}$ - $R_{WD}$  relation necessary

#### System parametrization



#### System parametrization



#### **For optically resolved binaries: ) minimum P**<sub>orb</sub>



observed M star templates (SDSS) synthesized M star templates (PHOENIX)



observed M star templates (SDSS)

synthesized M star templates (PHOENIX)



observed M star templates (SDSS) synthesized M star templates (PHOENIX)

Heller et al. (2009)









# White Dwarf - M Dwarf Binaries from the Sloan Digital Sky Survey

René Heller, Axel Schwope, Roy Østensen

#### **René Heller**

Astrophysikalisches Institut Potsdam

rheller@aip.de

Viña del Mar March 08, 2011

# Appendix

#### Appendix

The Poisson probability to find  $\nu$  objects with an area density  $\rho$  inside an area  $A = \pi \times (1.5'')^2$  is given by

$$P_{\rm M}(\nu) = \frac{\mu^{\nu}}{\nu!} e^{-\mu}, \qquad (1)$$

where  $\mu = A \times \rho$ . For  $\nu \geq 1$  and *n* trials, i.e. WD-dM candidates, we get an expectation value

$$N = n \times P(\nu \ge 1) = n \times (1 - e^{-\mu}).$$
 (2)

The approximate magnitude range of our sample is 15 < u, g, r, i, z < 20.5. From Boachanski et al. (2009, and priv. comm.) we count 3632 objects per square degree with  $15 \le z \le 20.5$ , and less objects in the other four filters. This provides us with  $\rho \lesssim 3632/(3600'')^2$ . Our spectroscopic sample consists of 2230, thus n = 2230 and Eq. (2) yields  $N \lesssim 4$ .