

Sunday, September 26, 2010

Leiden Observatory

Primary science case

The "pizza that nobody ordered"

Understand dark
 components of the universe

Gravitational lensing
 + photo-z's

 1500 square degree extragalactic 9-band map

Probes of dark energy

I. Expansion history of the universe a(t)
measure as m(z), D_A(z)

@ 2. (Linear) growth rate of structure

measure from evolution of cluster mass fn, matter power spectrum

Consistency is a test of General Relativity

Probes: clusters, SNIa, BAO, weak lensing

Oltimately wk.lensing potentially most powerful

0 0

Tomography: lensing effect as fn. of source redshift

0 0

Tomography: lensing effect as fn. of source redshift

Leiden Observatory

Tomography: lensing effect as fn. of source redshift

Lens pushes sources away' 'Radial squeezing'

Leiden Observatory

Tomography: lensing effect as fn. of source redshift

Sunday, September 26, 2010

00

0 0

Lens pushes sources away' 'Radial squeezing'

-eiden Observatory

0 0

Tomography: lensing effect as fn. of source redshift

Kids

Requirements

High fidelity images

VST@Paranal image quality + service observing

Reliable redshifts
 Good photo_z's + solid sp

Good photo-z's + solid spectroscopic calibration
 u-band sensitivity + VIKING survey: ugriZYJHK

Kids Image Quality over a Wide Field

PSF ellipticities——raw

PSF ellipticities--resid

Hard to attain uniform PSF in a prime focus camera (e.g. CFHT, DES camera)

eiden Observatory

Output Uniform PSF + low astrometric distortion were design drivers for VST.

Dark matter in galaxies

Haloes well-studied in central 10-50 kpc regions

- ø dynamical tracers, HI rotation curves, satellites
- Galaxy structure strongly affected by baryon physics
- Outer regions (>100kpc) probed by weak lensing
 <u>ark matter dominated</u>

Iong dynamical times, so memory of formation

directly probe dark matter physics, and halogalaxy formation relation

Galaxy-galaxy lensing

Measurement of galaxy halo lensing through stacking analysis

Iarge samples: study dependence on L, environment, spectral type, ...

avg. halo shapes can be measured reliably
new test of gravity theories
untested regime of dark matter simulations
M/L measurements as function of scale: understand bias in galaxy formation

The KiDS patches

Sunday, September 26, 2010

Kids

Leiden Observatory

 IDD T V LINLIND filter Exp (s) 5-σ 2" AB 	cf. UKIDSS
+ ZYJHK (~200n VISTA) Z 500 23.1	-
 Deeper in r, with good seeing Y 400 22.4 	+1.6
Match seeing distribution on Paranal J 400 22.2	+1.8
VST 2m deeper than SDSS (1m H 300 21.6	+1.6
shallower than CFHTLS) K 500 21.3	+1.3
 VISTA 1.5m deeper than UKIDSS Seeing or rule or east of time (s) Medn seeing (") 	5-σ 2" AB
Moon (40%) (20%) (20%) u' 900 1.0	24.8
Dark (50%) r' g' u' g' 900 0.75	25.4
Grey (15%) r' 1800 0.6	25.2
Bright (35%) i' i' i' i' 1080 0.75	24.2

KiDS	SKTDC I VIKTNIC										
	 ISO0 sq.deg. of ugri (~400n VST) + ZYJHK (~200n VISTA) 				filte	Exp (s)) 5-σ 2" AB	cf. UKIDSS			
N.					Z	500	23.1	-			
rato	Deeper in r, with good seeing				Y	400	22.4	+1.6			
serv	Match seeing distribution on Paranal				J	400	22.2	+1.8			
Obs	VST 2m deeper than SDSS (1m				Н	300	21.6	+1.6			
len	shallower than CFHTLS)					K	500	21.3	+1.3		
Leid	VISTA 1.5m deeper than UKIDSS Seeing 7				f	ilter	Exp time (s)	Medn seeing (")	5-σ 2" AB		
	Moon (40%) (20%) (20%) (20%	(20%)		u'	900	1.0	24.8				
	Dark (50%)	r '	g'	u'		g′	900	0.75	25.4		
Leiden	Grey (15%)	-	-	-		r	1800	0.6	25.2		
Iniversitet	Bright (35%)	i'	i'	i'		i'	1080	0.75	24.2		

KIDS GAMA, Herschel-ATLAS, 2dFGRS, SDSS

"Follow-up" has begun!

Kil

Other science

- Herschel-ATLAS fields need optical images
- KiDS-S overlaps with Mag. stream (STREGA)
- Galaxy evolution studies as function of environments, incl spectroscopy (GAMA@AAO)
- Slices through Southern galactic halo
- Large samples of high-redshift QSO's, local dwarf stars, galaxy clusters
- First epoch for a future variability/proper motion pass

Value to the community

- Large homogeneous broadband survey, massively multicolour, observable year-round from South
- 1/6th area of SDSS
 - 2x image quality
 - 2m deeper
- Large samples of clusters, groups, galaxies, ...
 7% of the extragalactic sky

KiD

Advanced data products

- Well-matched colour images
- Multi-colour source catalogues
- Photo-z catalogues
- Galaxy morphology fits
- Gaussian-PSF version of the images
- Crosslinks to spectra, 2dF, SDSS, GAMA

Discuss proprietary period for ADPs.

Status of the team

Motivated but understaffed

Grant applications only credible with a working VST and approved survey!

 Scientifically well-prepared through involvement in state-of-the-art lensing projects (CFHTLenS, PANSTARRS)

Technically prepared through AstroWISE effort
Based on real data from WFI, INT, HST,...

Universitent Leide

Adjustments to the plan

- Photometric calibration can piggyback on SDSS and SkyMapper
 - ø otherwise use bright time
- Data processing can be concentrated in fewer nodes than originally foreseen
- Primary science case focussed even more on lensing than before
 - BAO's with photo-z's no longer interesting
- Accelerated observing schedule requested
- Wide i survey (2000 sqdeg) dropped
- Would like to target deep spectroscopic survey fields

Other lensing surveys

No reason at present to change our strategy, but we should go fast! <u>Good seeing dark time</u> is the rate-determining step

Ø PANSTARRS: different img. quality, strategy, hemisphere

Ø DES: survey start mid 2012

consider coordination once data quality and schedule of both surveys is clear

Longer term SUBARU, PS4, LSST, EUCLID,...

- ø unique large, deep, high image quality 9-band survey
- NOT a variability survey, no compromises
 still timely
- well-matched to VST+OmegaCAM survey machine
- ø builds on European lensing expertise
- interesting pathfinder for future wk.lensing surveys/space missions

KiD

Leiden Observatory