Massive stars companionship in Trumpler 14

H. Sana
\&
Y. Al Momany, Y. Bieletsky, G. Carraro, G. De Silva, M. Gieles, G. James, V. Ivanov

Science case

- Multiplicity of massive stars ?
- Comparison to low-mass stars ?
- How does the companions compare to the general cluster population?
- Are they randomly drawn from classical IMF ?

Initial project

- 5 open clusters in Carina : 50 O and $\sim 100 \mathrm{~B} 0-5$ stars
- but ... only $\operatorname{Tr} 14$: 9 O and ~15 early B stars

Parameter space

Recent works

I-band Adaptive optics

Turner et al. 2008 • 116 O-stars in the GOC (V<8) --> 31 companions (27\%)

- $\Delta \mathrm{m}_{1}<6$ in 0.5"-1.0"
- $\Delta \mathrm{m}_{\mathrm{l}}<9.5$ in 1.0"-5.0"

Speckle interferometry

Mason et al. 2009 • 385 O-stars (>95\% in the GOC) --> 41 companion (11\%) (1998' update ...) • $\Delta \mathrm{m}_{\mathrm{V}}<3$ in 0.03"-5.0"

Spectroscopy

Mason et al. review: 138 spectroscopic papers on >300 objects

```
51\%
```

```SB
```

- Tight binaries, Strong preference for O+OB (Sana et al. 2008, 2009)
--> formation process signature (angular momentun?)

Trumpler 14

- d~2.8kpc
- $\mathrm{M} \sim 10^{4}$ Msol
- 9 O stars, ~ 15 B0-B3 stars
- One of the densest nearby open cluster
- The closest O2 I star ($\sim 80 \mathrm{Msol}$)
- The lowest high-mass SB fraction among nearby cluster
- Not included in recent AO campaign or HST fine guidance sensor observation

To keep in mind :

- @2.8pc : 1" <==> 2500AU

Data overview

- 1948 sources detected @ 6.3 sigma
- dynamic range $\sim 10 \mathrm{mag}$

Data overview

- 1948 sources detected @ 6.3 sigma
- dynamic range $\sim 10 \mathrm{mag}$
- closest pair @ d=0.25"
- median(dmin)=1.2"
- $\mathrm{d}<0.5^{\prime \prime}: 75$ pairs
-d<1.0" : 508 pairs
- d<5.0" : 14338 pairs

Data overview

- 1948 sources detected @ 6.3 sigma
- dynamic range \sim 10mag
- closest pair @ d=0.25"
- median(dmin $)=1.2$ "
- $\mathrm{d}<0.5$ " : 75 pairs
- d<1.0" : 508 pairs
- d<5.0" : 14338 pairs

$$
\begin{gathered}
\Delta \mathrm{K}_{\max } \propto(\mathrm{d}-.25)^{1 / 3} \\
\Delta \mathrm{~K}_{\max }=1 / 3 / 5 / 8 \\
@ \mathrm{~d}=0.3 / 0.5 / 1.0 / 2 .
\end{gathered}
$$

What we were looking for...

SAB 412 (O8V?)

Tr 14-8 (O6.5V)

5" $\times 5^{\prime \prime}$

What we were looking for...

Tr 14-8 (O6.5V)

$$
5^{\prime \prime} \times 5^{\prime \prime}
$$

- 6 new companions within $\mathrm{d}<1$ " ($\sim 2500 \mathrm{AU}$)
- Including 2 @ d=0.20-0.25"
- Visual pair fraction ~ 0.4 down to $\mathrm{K}=18$

We found some ...

Random pairing or true companions ?

- $\sigma_{\text {moy }} \sim 700 \mathrm{src} / \operatorname{arcmin}^{2}$
- $\sigma_{\max } \sim 1500 \mathrm{src} / \operatorname{arcmin}^{2}$ (Ascenso et al. 2007)
- $P_{\text {bound }}=\exp \left(-\sum_{\text {Kp }->\mathrm{Ks}} W_{K}\right)$
<---- Duchene et al. 2001
where $\mathrm{Wk}=\left(\mathrm{d}^{2}-\mathrm{d}_{\text {min }}{ }^{2}\left(\mathrm{~K}-\mathrm{K}_{\mathrm{p}}\right)\right)$

Random pairing or true companions ?

Random pairing or true companions ?

Random pairing or true companions ?

Random pairing or true companions ?

- only pairs with $\Delta \mathrm{K} \sim 1$ or $\mathrm{d}<0.5^{\prime \prime}$ cannot be explained by projection effects
- It does'nt means wider or larger contrast pair do not exist
- It means you cannot disentangle them :-(

Random pairing or true companions ?

- only pairs with $\Delta \mathrm{K} \sim 1$ or $\mathrm{d}<0.5^{\prime \prime}$ cannot be explained by projection effects
- It does'nt means wider or larger contrast pair do not exist
- It means you cannot disentangle them :-(

Growth curves

High Mass Stars

- $7.5<K<11$

- $\mathrm{M}>10 \mathrm{M}_{\text {sol }}$

Solar-type Stars

- $12.5<K<14$

- M ~ $1 \mathrm{M}_{\text {sol }}$

June 8-10 2009

Growth curves

High Mass Stars

- $7.5<K<11$

- $\mathrm{M}>10 \mathrm{M}_{\text {sol }}$

Solar-type Stars

- $12.5<K<14$

- $\mathrm{M} \sim 1 \mathrm{M}_{\text {sol }}$

June 8-10 2009

bright
$P_{K S}\left(D>D_{\max }\right)<0.03$

Growth curves

High Mass Stars

- $7.5<K<11$

Within 10000 AU

- Companions of LOW-MASS stars are compatible with uniform distribution in the fov
- Companions of HIGH-MASS stars are NOT (@ 0.02s.I.)
- Massive stars have statistically 2 more companions than solar-type stars
- $\mathrm{M} \sim 1 \mathrm{M}_{\text {sol }}$

June 8-10 2009

Companion brightness

High Mass Stars

- $7.5<K<11$
- $\mathrm{M}>10 \mathrm{M}_{\text {sol }}$

Solar-type Stars

- $12.5<K<14$

- $M \sim 1 M_{\text {sol }}$

No significant differences

- range of brightness ratios

> --> range a mass ratios

Conclusions

A MAD view of Trumpler 14

- AO corrected H \& K-band imaging of $\operatorname{Tr} 14$ in a 2 ' \varnothing FOV
- 1750 sources down to $\mathrm{K} \sim 18$; image dynamics of 10 mag

Massive star environment in Trumpler 14

- 6 new companions with $d<1$ " ($2500 A U$), including 2 @ d=0.20-0.25"

Within 10000 AU

- Massive stars have statistically more companions than solar type stars
--> massive star can sustain binary systems over large separation (Abt 1988)
- No obvious preference for high/low mass companion
--> possibly drawn from the cluster IMF
--> not a formation signature but a dynamical process

Conclusions

A MAD view of Trumpler 14

- AO corrected H \& K-band imaging of $\operatorname{Tr} 14$ in a 2 ' \varnothing FOV
- 1750 sources down to $\mathrm{K} \sim 18$; image dynamics of 10 mag

Deconvolution Massive star environment in Trumpler 14

- 6 new companions with $d<1$ " ($2500 A U$), including 2 @ d=0.20-0.25"

Within 10000 AU

- Massive stars have statistically more companions than solar type stars

Abt 1988 --> massive star can sustains binary systems over large separation

- No obvious preference for high/low mass companion
--> not a formation signature but a dynamical process
Dynamical model given Mcluster and Rcore

