Galaxy Clusters in the Early Universe (Pucon, Chile, 12/11/2009)

Panoramic Views of Cluster Evolution since z=3 with Subaru

Taddy Kodama (NAOJ),

Yusei Koyama (Tokyo), Masao Hayashi (Tokyo), Masayuki Tanaka (ESO), Ichi Tanaka (Subaru), Masaru Kajisawa (Tohoku), Carlos de Breuck (ESO), and the PISCES/HzRG teams

Outline (Summary)

- Large scale structures in and around clusters at all redshifts (0.4<z<3)</p>
- Starbursts and truncation in groups/outskirts at z<1</p>
- > High SF activity in the cluster core at $z \sim 1.5$
- Disappearance of the red sequence at z>2.2

Origin of Environmental Dependence

N-body simulation of a massive cluster

 $M_{cl}=6 \times 10^{14} M_{\odot}, 20 \times 20 M_{PC}^2$ (co-moving)

Origin of Environmental Dependence

N-body simulation of a massive cluster

 $\underline{M_{cl}=6\times10^{14}} M_{\odot}, 20\times20 M pc^2 \text{ (co-moving)}$

Origin of Environmental Dependence

N-body simulation of a massive cluster

★Distant X-ray clusters (0.4<z<1.5): Suprime-Cam, MOIRCS Kodama, M.Tanaka, Koyama, Hayashi, et al. (PISCES team)

★Proto clusters around RGs/QSOs (2<z<5.2): MOIRCS Kodama, I.Tanaka, Kajisawa, De Breuck, Miley, Kurk, et al. (HzRG team)

 $M_{cl}=6 \times 10^{14} M_{\odot}, 20 \times 20 M pc^2$ (co-moving)

becomes more relevant.

Nurture? (external)

Need to go outer infall regions to see directly what's happening there.

10 X-ray clusters (0.4 < z < 1.45) are completed

<u></u>	Classic .				т	D . 1	C . 15 . 15 .
Class	Cluster	KA	Dec	z	\mathbf{L}_X	Bands	Coordination
		(J2000)	(J2000)		10^{44}		
z~0.4	CL 0024 + 1654	00 26 35.7	+17 09 43.1	0.39	3.2	BRz',NB	ACS, XMM, Chandra
	CL 0939 + 4713	$09 \ 42 \ 56.2$	$+46\ 59\ 12$	0.41	9.2	BVRI,NB	XMM
	(RX J2228+2037)	$22 \ 28 \ 36$	$+20 \ 37 \ 12$	0.42	16.5	BVRi'	Chandra, S-Z
z~0.55	MS $0451.6 - 0305$	$04 \ 54 \ 10.9$	-02 58 07	0.54	12.0	BVRI	ACS (3.5'), Chandra, S-Z
	CL 0016+1609	$00\ 18\ 33.5$	$+16\ 26\ 13.4$	0.546	26.0^{\dagger}	BVRi'z'	ACS (3.5'), XMM, Chandra, S-Z
	(MS 2053.7 - 0449)	$20 \ 56 \ 21.8$	-04 37 51.4	0.583	5.0	BVRi'z'	ACS (3.5'), XMM, Chandra, S-Z
<i>z</i> ~0.85	RX J1716.4+6708	17 16 49.6	$+67 \ 08 \ 30$	0.813	2.7^{\ddagger}	VRi'z', NB	Chandra, Astro-F target
	(MS 1054.4 - 0321)	10 56 59.5	-03 37 28.4	0.83	20.0	VRi'z'	ACS (6'), XMM, Chandra, S-Z
	RX J0152.7-1357	$01 \ 52 \ 42.0$	-13 57 52.9	0.831	16.0	VRi'z'	ACS (6'), XMM, Chandra, S-Z
	(RX J1226.9+3332)	$12 \ 26 \ 58.2$	$+33 \ 32 \ 49$	0.9	53.0	VRi'z'	XMM, Chandra, S-Z
	(CL 1604+43)	$16\ 04\ 28.3$	$+43 \ 16 \ 24.0$	0.9	2.0	VRi'z'	ACS (6'), XMM
$z\sim 1.2$	RDCS J0910+5422	09 10 44.9	$+54 \ 22 \ 08.9$	1.11	2.1	VRi'z'	Chandra ACS(3.5')
	CL 1252-2927	$12 \ 52 \ 54.4$	$-29 \ 27 \ 17.0$	1.23	6.6	VRi'z'	ACS (6'), XMM, Chandra
	(RX J1053.7+5735)	$10 \ 53 \ 43.4$	$+57 \ 35 \ 21$	1.14	2.0^{\ddagger}	VRi'z'	ACS $(6')$ XMM
	RX J0848.9+4452	$08 \ 48 \ 46.9$	+44 56 22	1.26	2.8	BVRi'z'	ACS (6'), XMM, Chandra
z~1.4	(XMMU2235.3-2557)	22 35 20	.6 -25 57 42.0	1.39	3.0	VRi'z'	XMM
	XMMJ2215.9-1738	22 15 58.5	-17 38 02.5	1.45	4.4	VRi'z',NB	XMM

Kodama et al. (2005)

RXJ 0152.7-1357 cluster (z=0.83; ~7Gyrs ago)

A Huge Cosmic Web at z=0.55 over 50 Mpc R.A. [Mpc] (80'x80' by 7 S-Cam ptgs.)

ESO 41/09 - Science Release 03 November 2009 Shedding Light on the Cosmic Skeleton

Masayuki Tanaka, et al.

CL 1252-2927 (z=1.24)

Tanaka, et al. (2009a)

30 Mpc (comoving)

Subaru/Suprime-Cam (V,R,I',z') + UKIRT/WFCAM (K')

27 arcmin

30 Mpc (comoving)

Subaru/Suprime-Cam (V,R,I',z') + UKIRT/WFCAM (K') + VLT/FORS2 (spectroscopy)

27 arcmin

Galaxy properties vs. environment in LSS

Sharp colour transition is seen at medium ("group") density!

Sharp colour transition in groups/outskirts

RXJ1716 cluster (z=0.81)

Mapping star formation avtivities with narrow-band imaging (Hα, [OII]) with Suprime-Cam/MOIRCS

Targets	Redshif (z)	t Filter	Instr.	CW (µm)	FWHM (µm)	Line (M	SFR I/yr, 50	Status ס)
CL0024+1652 CL0939+4713	0.395 0.407	NB912 NB921	S-Cam S-Cam	0.9139 0.9196	0.0134 0.0132	Ηα Ηα	0.1 0.1	Kodama+04 Nakata+10
RXJ1716.4+6708	0.813	NB119 NA671	MOIRCS S-Cam	1.1885 0.6714	0.0141 0.0130	Ηα [0]]]	1.7 ~2	Koyama+09 Koyama+10
XCS2215.9-1738	1.457	NB912	S-Cam	0.9139	0.0134	[OII]	4.3	Hayashi+09

Advantages:

- (1) Good indicators of SFR, especially Ha (low reddening, well calibrated)
- (2) "Unbiased" sample (no pre-selection of targets is required).
- (3) "Complete" census of star forming galaxies to a certain limit in SFR.
- (4) Membership can be confirmed by the presence of emitters in NB +colours.
- (5) On top of the phot-z selected members (e.g. "passive" galaxies),

we can pick out "active" galaxies which tend to be missed by phot-z selection.

Combination of BB selection (passive galaxies) + NB emitters (active galaxies)

Kodama, Balogh, et al. (2004)

Combination of BB imaging (passive galaxies) & NB imaging (active galaxies) provides high-completeness sample of cluster members (even w/o spec-z)!

Mapping star formation in and around the RXJ1716 cluster at z=0.81 with H α and MIR

Subaru/S-Cam (*V R i' z'*) MOIRCS (*J*, *NB119*) AKARI / IRC (*3*, *7*, *15μm*)

Selection of Hα emitters associated to the RXJ1716 cluster (z=0.81)

J-NB colour excesses + appropriate broad-band colours SFR (H α) > 1.5 M $_{\odot}$ /yr

Avoidance of the 15µm sources and the Hα emitters in the cluster centre

Koyama, TK, et al. (2009)

Spatial Distribution of the 15µm sources

Koyama, TK, et al. (2008)

Sharp colour transition in groups/outskirts

RXJ1716 cluster (z=0.81)

What is responsible for truncation of star formation ?

• Ram-Pressure Stripping ($\sim 10^7$ yrs)

Gas in galaxies is stripped off as they fall into cluster environment. This is not efficient in group environment where travelling velocities of galaxies are not very high (\sim 200-300km/s)

Galaxy-Galaxy Mergers (~10⁸ yrs)

Gas in galaxies is quickly consumed as a burst or stripped off due to galaxy-galaxy interaction/mergers.

Starburst is expected.

• Suffocation (hot gas stripping) ($\sim 10^9$ yrs)

Weak interaction/ram-pressure can still expel the loosely bound gas in the halos, and star formation in disks eventually terminates without any supply from the gas reservoir.

No starburst is expected.

Interacting galaxies in the strong15µm sources

Koyama, TK, et al. (2008)

Hidden star formation in the red sequence?

 $H\alpha$ emitters and 15µm sources on the red sequence!

Lots of star formation is likely to be hidden in the optical (rest UV) surveys! Koyama, TK, et al. (2009)

Dusty star forming galaxies on the red sequence!

There may be a large amount of hidden star formation in IR which is not seen even with $H\alpha$??

A narrow-band [OII] imaging with Suprime-Cam/Subaru (XCS2215@z=1.457) Δ velocity [km/s] Hayashi et al. (2009) 6000-4000-2000 2000 4000 0 XMMXCS J2215.9-1738 just accepted by MNRAS (arbitrary 0.5 NB912 2 30.0 Number [OII] @ z=1.46 17:38:00. Dec. (J2000) Transmission 0 30.0 NB912 filter 39:00.0 (Stanford+06) $(\lambda c=9139A, \Delta \lambda=134A)$ 0 9000 9300 9100 9200 Wavelength [Å] B A (.12000 Suprime-Cam **MOIRCS** instruments passbands **NB912** \mathbf{z}' B Ks 2008.07.30-31 2008.06.30-07.01 dates pointings FoV 32' x 23' 6.1' x 5.8' 23.84-24.57 23.07-23.65 27.59 25.81 25.75 3σ mags seeing 1.09" 1.09"

Selection of [OII] emitters associated to the XCS2215 cluster (z=1.46)

SFR ([OII]) > 2.6 M⊚/yr

Hayashi, TK, et al. (2009)

Spatial Distribution of the [OII] emitters

(AGN contamination?)

Hayashi, TK, et al. (2009)

Spatial Distribution of the [OII] emitters

(AGN contamination?)

Hayashi, TK, et al. (2009)

Star forming activity in the cluster cores

 \Box H α emitters at z=0.81 (RXJ1716)

 \Box [OII] emitters at z=1.46 (XCS2215)

Star forming activity in the core is much higher in the higher redshift cluster!

Inside-out propagation/truncation of star forming م

Do we eventually see a reversal of the SFR-Rc / SFR-density relations? (galaxy formation bias)

High redshift(z) Radio Galaxies [HzRG] with Subaru, VLT, and Spitzer

7 confirmed proto-clusters at 2 < z < 5.2 associated to radio galaxies

Overdense regions in Lyman- α emitters by a factor of 3—5.

Name redshift NIR Spitzer Lya spectra others PKS 1138-262 2.16 JHKs 3.6--24.0 16 NIR/Opt Ha, VLA, Chandra, SCUBA 4C 23.56 2.48 JHKs 3.6--8.0 NIR Ha --USS 1558-003 2.53 JHKs 3.6--8.0 Ha planned --MRC 0052-241 2.86 JHKs 3.6--8.0 35 USS 0943-242 2.92 JHKs 3.6--24.0 29 Opt MRC 0316-257 3.13 JHKs 3.6--8.0 32 NIR TNJ 1338-1942 4.11 JHKs 3.6--8.0 37 Suprime-Cam, VLA, MAMBO TNJ 0924-2201 5.19 JHKs 3.6--24.0 6 Suprime-Cam/ACS (LBGs)

NIR imaging primarily using MOIRCS/Subaru and Hawk-I/VLT

Kodama et al. (2007), De Breuck et al. (Spitzer HzRGs)

When does the red-sequence of galaxies eventually break down ?

When does the red-sequence eventually break down?

The most distant X-ray clusters to date

XMMJ2235 (z=1.39)

XMMJ2215 (z=1.45)

z(assembly)>1.5

JHK selection of 2.3≤z≤3.1 galaxies

Common criteria (DRG): J-K>2.3 passive/dusty gals at z>2 Our new criteria (JHK): (J-K)> 2(H-K)+0.5 && J-K>1.5 passive/dusty (2<z<3.3) + star-forming (2.3<z<3.1)

Kajisawa et al. (2006), Kodama et al. (2007)

JHK selection of 2.3≤z≤3.1 galaxies

Common criteria (DRG): J-K>2.3 passive/dusty gals at z>2 Our new criteria (JHK): (J-K) > 2(H-K) + 0.5&& J-K>1.5 passive/dusty (2 < z < 3.3) +star-forming (2.3<z<3.1) J-K>2.3 -- r-JHK J-K<2.3 -- b-JHK

Kajisawa et al. (2006), Kodama et al. (2007)

Overdensity of NIR selected galaxies in proto-clusters

Spectroscopic follow-up in progress...

Incredibly unlucky with weather so far! (10 out of 13 Subaru nights were clouded out !) Nevertheless...

Subaru/MOIRCS (NIR, ~30 slits over 7'×4', R=1300, 5 hrs) Subaru/FOCAS (optical, ~30 slits over 6' ϕ , R=1000, 5 hrs) VLT/FORS2 (optical, ~30 slits over 7'×7', R=1000, 5 hrs)

PKS1138 (z=2.16)

see Doherty et al. (2009)

- 30 out of 97 DRGs were targeted (31%)
- 4 redshifts could be measured out of 30 (13%)
- 2 out of 4 are confirmed to be at the RG redshift of z~2.16 (50%). USS0943 (z=2.93)
- 38 out of 132 JHKs were targeted (28%).
- 18 redshifts could be measured out of 38 (47%).
- 10 out of 18 JHKs are confirmed to be at 2.3<z<3.1 as designed (58%).
- But none (out of 17), except the RG itself, is located at z~2.93 (0%).
- Instead, we found a foreground structure at z=2.6 consisting of 6 JHKs.

We should go much deeper under good conditions and also target more candidates.

Emergence of the red-sequence at z~2 in proto-clusters?

The red sequence seems to be emerging between z=3 and 2 (2 < Tuniv[Gyr] < 3)!

Where are the progenitors of massive galaxies at z~3?

Red sequences in the field at z~2

Yale-Chile (MUSYC)

Kriek et al. (2008)

NEWFIRM, 0.5 sq. deg. (COSMOS, AEGIS)

Evolution of stellar mass function

GOODS-MUSIC (160 arcmin²) with Spitzer bands. Fontana et al. (2006)

Environmental Dependence at z~2.3

Ages and stellar masses are larger by factor ~2 in the proto-cluster than outside. Steidel et al. (2005)

Summary

Starbursts/truncation of galaxies in groups/ outskirts of clusters at z<1</p>

> → External effects ("Nurture") (galaxy-galaxy interaction?)

Formation of massive galaxies in cluster cores at z>1.5-2

→ Intrinsic effects ("Nature") (galaxy formation bias?)

"Inside-out propagation/truncation of star formation in clusters?"

I thank the "real" organizers!