<u>Weak lensing detection of a</u> <u>filamentary structure near the</u> <u>massive cluster MACSJ0717 ?</u>

Galaxy Clusters in the Early Universe

Mathilde Jauzac, Jean-Paul Kneib

Alexie Leauthaud , Marceau Limousin , Eric Jullo , Johan Richard , Julien Zoubian , Gaël Foex , Harald Ebelling , Graham Smith , Phil Marshall & the MACS collaboration

<u>Cluster Lensing back to Basics</u>

- Basics of lensing:
 - Important mass density locally deform the Space-Time,
 - A pure geometrical effect, no dependence with photon energy

- Lensing by a (massive) cluster
 - Strong Lensing (SL) = core of the cluster as arcs & multiple images
 - Weak Lensing (WL) = outskirts of the cluster as statistical deformation of background sources

MAssive Cluster Survey (MACS)

Ebeling, Edge & Henry, 2001

 → Deep cluster survey which provided very massive clusters, selected in the X-Rays with z >
 0.3
 → Based on optical follow-up of faint extended sources in the X-ray ROSAT all sky survey
 → Comprises about 120

clusters that are likely to be the <u>most massive</u> <u>structures in the distant</u> <u>Universe</u>

MACS subsample at z > 0.5

Ebeling et al., 2007

High-redshift subsample

MACS high-z subsample, reference: [http://adsabs.harvard.edu /abs/2007ApJ...661L..33E Ebeling et al. 2007, ApJ, 661, L33]

name	RA (J2000)	Dec (J2000)	z	HST/ACS
MACSJ0018.5+1626	00 18 33.835	+16 26 16.64	0.5456	F775W
MACSJ0025.4-1222	00 25 29.381	-12 22 37.06	0.5843	F555W, F814W
MACSJ0257.1-2325	02 57 09.151	-23 26 05.83	0.5049	F555W, F814W
MACSJ0454.1-0300	04 54 11.125	-03 00 53.77	0.5377	F555W, F814W
MACSJ0647.7+7015	06 47 50.469	+70 14 54.95	0.5907	F555W, F814W
MACSJ0717.5+3745	07 17 30.927	+37 45 29.74	0.5458	F555W, F814W
MACSJ0744.8+3927	07 44 52.470	+39 27 27.34	0.6976	F555W, F814W
MACSJ0911.2+1746	09 11 11.277	+17 46 31.94	0.5049	F555W, F814W
MACSJ1149.5+2223	11 49 35.093	+22 24 10.94	0.5444	F555W, F814W
MACSJ1423.8+2404	14 23 47.663	+24 04 40.14	0.5431	F555W, F814W
MACSJ2129.4-0741	21 29 26.214	-07 41 26.22	0.5889	F555W, F814W
MACSJ2214.9-1359	22 14 57.415	-14 00 10.78	0.5027	F555W, F814W

MacsWiki: High-redshift subsample (dernière édition le 2009-04-03 12:54:00 par JeanPaulKneib)

→All observed with ACIS-I instrument aboard Chandra X-ray Observatory

→Deep observations with SuprimeCam wide-field imager on the Subaru 8.3m telescope (B,V,R,I & z' bands)

→Imaged by MegaCam 1-degree imager on 3.6m Canada-France-Hawaii Telescope (U-band)

→High resolution imaging of cluster cores with <u>ACS datas</u> (f555w & f814w)

→ extensive spectroscopic observations of galaxies in the fields with multiobject spectrograph on 8m-class telescopes on Mauna Kea (Gemini, Keck-I, Keck-II)

A catalogue of more than 3000
 redshifts of galaxies in MACS cluster
 fields (Barrett & Ebeling, 2007)

cors)

CXO press release

STRONG LENSING ANALYSIS

ACS Data with f814w & f555w

Zitrin et al.(2009)

13 multiple systems -> M(<350 kpc) = 7.4 * 10^{14} M_{SUN}

WORK IN PROGRESS

- 4 more multiple systems
- 2 with zspec & 2
 nights at Keck
- 3 straight (2,3,4) structures (no curvature, 1)= mass on each side !

WEAK LENSING CATALOGUES : 1ST STEP

→ ACS datas : need to be corrected from PSF & CTE (Charge Transfer Efficency)

Pipeline by A. Leauthaud for

<u>COSMOS field</u> (Leauthaud et al. 2007)

- Detection of sources using Sextractor : the 'Hot-Cold' method (used in Rix et al. 2004)
- Cleaning process : objects within noisy border of tile , objects with automatically defined masks , with manually defined masks & objects with double or more detections
- Shape measurements using RRG method (Rhodes, Refregier & Groth 2000)
 : correction from PSF & CTE
- Lensing cuts : d>3.6 pix , S/N>4.5 , e<2

<u>WEAK LENSING CATALOGUES : 2ND</u> <u>STEP</u>

→ Galaxy clusters : contamination from clusters' galaxies

Add lensing cuts for galaxy clusters

- Color-Magnitude Selection : remove galaxies in the cluster red sequence
- Redshift cut : z > 0.6
- Magnitude cut : mag_aper > 23
- Size cut : rH > 0.2"
- (V-I) criteria
- Ellipticity cut : $\varepsilon < 0.8$

WEAK LENSING CATALOGUES : COLOR-MAGNITUDE SELECTION

<u>« Trumpet-like »</u> <u>color-magnitude</u> <u>selection</u>

- Linear fit based on low magnitude population
 Polynomial fit based
 - on the linear fit population

WEAK LENSING CATALOGUES : REDSHIFT SELECTION

Add a redshift thanks to COSMOS redshift distribution :

Redshift of MACSJ0717 = 0.55 Redshift cut = 0.6

MACSJ0717.5+3745 : WL ANALYSIS

- 18 ACS maps :
 - 17 representing the field (f814w & f606w)
 - 1 representing the cluster core (f814w & f555w)
 - Analysis made separatelly
 - 5302 background sources in the field
 - 159 sources in cluster core

→ Final catalogue = 5461 sources

	CORE	FIELD
Sextractor	3126 sources	30897 sources
RRG	592	10123
(V-I)(I)	432	8811
z > 0.6	322	6736
eps	540	9948
Mag & Rh & CM	372	8293
	159 sources	5302 sources
	(16 sources/arcmin ²)	(31 sources/arcmin ²)

MACSJ0717.5+3745 : MODELISATION

LENSTOOL : 4 clumps in the Xray + 1 homogeneous grid

-> Interpolate the gravitational potential of the cluster using a uniform grid of potential and 4 well defined potential to modelise the cluster core

LENSTOOL

- 1. 'unlens each galaxy' : $e_s = f(e^i, gt^h)$
- 2. bayesian MCMC optimisation in the source plan

MACSJ0717.5+3745 : PRELIMINARY RESULTS

 $M_{tot} = 2.51 * 10^{15} M_{SUN}$ Sigma = 2.6 * 10⁹ M_{SUN} / kpc²

Bayesian method -> Informations on mean & errors

MACSJ0717.5+3745 : PRELIMINARY RESULTS

~ 350

Zitrin et al. (2009) : M(<350 kpc) = 7.4 * 10¹⁴ Msol Sigma_Zitrin ~ 2*10⁹ M_{sol} / kpc²

-> Sigma_Zitrin < Sigma

-> expecting Sigma < Sigma_Zitrin

-> mass sheet degeneracy ???

-> next step is to include the wider field subaru data to break the mass sheet

degeneracy

<u>CONCLUSION</u>

→ Preliminary Results

- Mfield = $2.51 \times 10^{15} M_{SUN}$
- Detection of a structure in the field ?

→ Future works

- Improve modelisation
 - include the wider field subaru data to break the mass
 - sheet degeneracy & remove edge effects
 - SL+WL analysis on MACSJ0717
 - WL analysis on all high-z MACS sample !

8 In memory of Philippe Jauzac, my father 29th of August 1948 - 22nd of October 2009

COSMOS field = 1.64 deg² & 3.9*10⁵ background sources MACSJ0717 field = 0.06 deg² & 6780 background sources