Precision Cosmology from Future Galaxy Cluster Surveys

How do we control various systematics from observations and theory?

Hao-Yi Wu

KIPAC, Stanford University, USA

(in collaboration with Risa Wechsler, Eduardo Rozo, and Andrew Zentner)

ESO GCEU November 12, 2009

Cosmology from Galaxy Cluster Counts

- Galaxy clusters probe:
 - Structure growth
 - Expansion rate

Figure: Haiman '01 (w= -1; -0.6; -0.2; no DE)

Current Cosmological Constraints from Clusters

Mantz et al. '09 for ROSAT and Chandra Clusters; also see Vikhlinin '09 Rozo et al. '09 for SDSS Clusters; also see Gladders '07 for RCS Clusters

Outline

- Introduction
- Part I: Follow-ups and observable-mass distribution
 - External constraints from follow-up observations
 - Properties of follow-up mass tracers
 - Optimization of the follow-up target selections
- Part II: Theoretical uncertainties in mass function and halo bias
 - Requirements for future surveys
 - Comparison of different mass and redshift regimes

The Dark Energy Survey

- Galaxy clusters selected from optical imaging (~10⁵), 40% scatter
- Survey area = 5000 deg²; overlap with the South Pole Telescope (SZ survey)
- Survey depth: $M_{th} = 10^{13.7} h^{-1} M_{sun}$ and $z_{max} = 1$

Self-calibration Analysis

• Using sample variance (clustering of galaxy clusters) to self-calibrate the observable-mass distribution (Lima & Hu '04, '05).

The Dark Energy Figure of Merit (FoM)

- FoM :=1/[$\sigma(w_a)\sigma(w_p)$] \propto 1/(area of the error ellipse of w_0, w_a)
- Current Data (WMAP5+SNe+BAO+X-ray clusters): 15.5 (Mantz '09)
- DETF Report (Albrecht '06): Stage III CL+Planck prior:
 - Optimistic: 35.21
 - Pessimistic: 6.11

Part I: Follow-ups for DES-like Optical Surveys

- The mean and variance of the follow-up mass measurements can further constrain the O-M distribution. The variance is particularly crucial for constraining the scatter.
- Optimized follow-up strategy can further improve the FoM.
- With 100 follow-up clusters, FoM can be improved by 77% Wu, Rozo, and Wechsler, arXiv:0907.2690; Also see Majumdar and Mohr '03, '04

Complications: Scatter and Bias of Follow-up Mass Tracers

• Lowing the scatter in survey sample can further improve the power of follow-ups.

• The bias in follow-up mass measurements needs to be controlled at 5% level.

Also see Cunha '08 for cross-calibration; Nagai '07, Rudd '09 for possible bias

Optimization: Different Strategies for X-ray and SZ

	10/53				X	ray co	ost proc	cy			
	10	1.	9.	27.	53.	85.	122.	160.	198.	233.	265
Mass [h" M_J	1014.9	-									
		5.	44.	127.	248.	402.	576.	761.	946.	1120.	127
	1054.5	-									
		22.	207.	591.	1161.	1883.	2710.	3591.	4477.	5326.	610
	1014.3	-				_	_	_	_	_	_
		100.	958.	2739.	5392.	8766.	12648.	16808.	21022.	25095.	2887
	10 0.0	0.0		0.2		0.4		0.6		0.8	
	Z										
Mass [h ¹ M ₀]	10***		X fa	y. dp.M	=47.1%	, cost =	1640 (210 ks	with X	MM)	ó
		100.%	100.%	20.%	0.%	0.%	0.%	0.%	0.%	0.%	0.
	10 ^{31,9}	49	0	0	0	0	0	0	0	0	0
		91.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.
	10-5	32	0	0	0	0	0	0	0	0	0
	1011	14.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.
	~	0	0	0	0	0	0	0	0	0	0
	100.7	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.
	01	0 02			0.4 0.6 z			6	0.8		
		X ray, d=109.9%, cost = 64640 (8400 ks with XMM)									
♠	1000	8	0	19	0	0	12	0	0	0	16
		100.%	0.%	29.%	0.%	0.%	18.%	0,%	0,%	0.%	94.
	10	0	0	0	188	0	0	0	0	0	0
W		0.%	0.%	0.%	25.%	0.%	0.%	0.%	0.%	0.%	0.
Mass [h	10	0	0	0	0	0	0	0	0	0	0
		0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.
	10.	117	0	0	0	0	0	0	0	0	0
	100.7	16.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.%	0.
	-	0 02					-	0.6		0.8	

Z

- Clusters are weighted by their observational cost $\propto 1$ / Flux
- X-ray follow-ups
 - Cost is sensitive to redshift
 - Small program: low-z clusters
 - Large program: clusters span a redshift range
- SZ follow-ups
 - Cost is sensitive to mass
 - Small program: massive clusters span over a redshift range
 - Large program: some lessmassive clusters

Optimization: Different Strategies for X-ray and SZ

1.1

Z

Optimization: FoM as a function of Telescope Time

 Optimizing the FoM at a given cost can significantly improve the FoM. To achieve a given FoM, the optimization can reduce the cost by an order of magnitude over random selection.

Part II: Theoretical Uncertainties in Halo Mass Function and Halo Bias

- How does the uncertainty in mass function and halo bias impact the cosmological constraints from clusters? What are the required accuracies of them in future cluster surveys?
- Current theoretical uncertainties in the shape of mass function (~20%) can lead to significant systematic errors in future surveys. We compare Sheth-Tormen '99 and Tinker '08 fitting formulae as an example.

11

Wu, Zentner, and Wechsler, arXiv: 0910.3668 Also see Wu et al. '08 for the effects of assembly bias

Modeling the Uncertainties in Mass Function and Halo Bias

- We discretize the mass function and halo bias to describe the uncertainty in a parameterizationindependent way.
- The Tinker function is used as the fiducial model.
- We include f_i's and g_i's as additional nuisance parameters and study their impacts.

Also see Cunha & Evrard '09 for the study of parameters in the Tinker function 12

Degradation in the Dark Energy Figure of Merit

Top: unknown O-M Bottom: known O-M Left: DES assumption Right: SPT assumption

• For DES, percentlevel accuracy on MF is required.

• The requirement on halo bias is less stringent.

Uncertainty in mass function

DES assumptions: $M_{th} = 10^{13.7} M_{sun}/h$; Scatter = 0.4; Area = 5000 deg² SPT assumptions: $M_{th} = 10^{14.1} M_{sun}/h$; Scatter = 0.2; Area = 2000 deg² ¹³

Effects of Survey Area

Most stringent requirement will come from a fullsky optical survey.

- Future full-sky optical surveys will required sub-percent level accuracy in mass function.
- The required constraints are almost independent of z_{max} and assumptions of observable--mass distribution.
- Optical surveys have more stringent requirements than Xray and SZ surveys.

Comparing Bins

- We tighten the MF in one bin at a time and calculate the FoM improvement.
- This pattern reflects the CMB prior, cluster counts, and degeneracy between scatter and MF.
- Improving the mass function accuracy in low redshift and low mass will be the most beneficial.

Comparing Bins

Mass

Z

More general O-M assumption

Summary

- We studied how follow-ups for future optical galaxy cluster surveys can improve the dark energy constraints.
 - The systematic errors of the follow-up mass tracers need to be controlled at ~5% to avoid significant degradation in FoM.
 - Optimization can reduce the observational cost by up to an order of magnitude. Less than 200 X-ray or SZ clusters can improve the FoM by 50% in DES-like surveys.
 - Note for observers: Follow-ups over a wide range of mass and redshift are the most effective!
- We studied the impact of theoretical uncertainties in mass function on future surveys.
 - Future optical surveys will require percent-level accuracy in mass function to avoid severe degradation in the FoM.
 - ✓ Note for simulators: The low mass and low redshift regimes are the most important to accurately calibrate mass function.