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SCIENTIFIC GOALS

Clusters of galaxies are usefull for :

cosmology tool : number counts, mass function

formation/evolution of structures : signature of non grav. process 
in scaling relations (e.g. M-Tx), redshift evolution, self-similarity

+
+

Need reliable mass estimators

combine different data sets : Xrays and lensing

in this work : preliminary results from a lensing analysis
of a sample of galaxy clusters

difficult @ high z



Xrays DATA

XMM-Newton
 Large Programme

(P.I. M. Arnaud)

total exposure time ~ 1.1 Msec

unbiased, flux limited sample
20 clusters

2.5 keV < kT < 12 keV
  0.4 < z < 0.6

good sampling of Lx

defined as the REXCESS 
sample to compare at low z

Lx>3.1044 : WL



LENSING DATA

Megacam @ CFHT
(P.I. G. Soucail)

g’ (1.6ksec), r’ (7.2ksec) 
i’ (1.2ksec), z’ (1.8ksec)

- homogeneous obs.
- good seeing (< 0.8’’ for r’)
- low mc (~ 26 for r’)

11 brightest clusters
(Lx>3.1044 erg/s)

weak lensing
 + strong lensing (4 clusters)
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5.1. Lens strengh

The observed reduce shear g depends on the system geometry,
i.e. the redshift of the lens zl and the source zs. We can rewrite the
shear and the convergence as a function of the geometrical factor
β = Da(zl, zs)/Da(0, zs) containing the redshift dependance (the
Da being angular diameter distances). The reduce shear then be-
comes (Hoekstra00):

g =
γ

1 − κ =
βsγ∞

1 − βsκ∞
(6)

where βs = β/β∞ = (Da(zl, zs)Da(0,∞))/(Da(0, zs)Da(zl,∞))
and γ∞, κ∞ are the shear and convergence for a source at an infi-
nite redshift.
So the question is how to deal with the fact that we don’t know
the redshift of the background galaxies. In the case of low red-
shift clusters (z ∼ 0.2), a good approximation is to put all galax-
ies at the same redshift (typically z ∼ 1) or determine the mean
redshift of the sources and use β(< z >) instead of < β(z) > aver-
aged on the redshift distribution of the sources. But, for clusters
with higher redshifts, this simplification doesn’t hold anymore as
the factor β covers a broader range of value for our background
galaxies redshifts. In this case we have to take the mean value
< β(z) > :

< β(z) >=

∫ zmax

zl
p(z)β(z)dz

∫ zmax

zl
p(z)dz

(7)

with p(z) the redshift distribution of the sources. What to choose
for this distribution ? 2 approaches can be used : take an ana-
lytic distribution (e.g. Gamma distribution) or use redshift sur-
veys an calculate < β> with this catalogue. In our analysis we
choose to use the CFHTLS Deep (T0004 release) photometric
redshifts produced with HyperZ (Pello09). These redshifts were
computed using 5 bands (with Megacam @ CFHT). They have
been well calibrated and validated with spectroscopic redshifts
so we can be confident when using them. For each cluster we
will apply the same cuts (magnitude, red sequence and clus-
ter redshift) we used to select the background galaxies to the
CFHTLS-D1 catalogue in order to estimate < β> on a similar
distribution (see table ?? for the value we obtain and the corre-
sponding effectif redshift ze f f defined as β(ze f f ) =< β >).
Using this method, i.e. using < β >, is still not completely
rigourous as pointed out in Hoekstra00, Seitz& Schneider97.
What we mesure is indeed the average reduce shear< g >, which
is not proportionnal to β :

< g >=

∫ zmax

zl

βs(z)γ∞
1−βs(z)κ∞ p(z)dz
∫ zmax

zl
p(z)dz

(8)

This quantity has to be compared to the one usually used, g =
<βs>γ∞

1−<βs>κ∞
. Taking the CFHTLS-D1 redshifts, we have compute

the ratio of these 2 quantites g(< β> )/ < g > for a SIS model
with different values of σ and for a lens at z=0.6. We deduce
that the approximation of using < β > instead of a redshift for
each galaxy introduce an underestimation less than 5% for a sin-
gular isothermal sphere with σ = 1500km.s−1 at a redshift of
0.6 (in the radii range of the weak lensing analysis, r > 100′′).
If we would use the region near the very center of the cluster
(r < 100′′), the shear would be too underestimate (strong lens-
ing). Therefore in all our analysis we will exclude all the back-
ground galaxies in this zone. As this underestimation grows with
the lens redshift as showed in Hoekstra00, for all our clusters we

won’t exceed this 5% of error (with the assumption that our clus-
ters have σ < 1500km.s−1) .
We have to notice here that in our background galaxies selection,
we have removed those with a bad shape estimation. Typically
these objects are the most distant galaxies. So it introduces a lit-
tle bias in determining the lens strengh with the previous method
but we expect this effect to be small and therefore negligible (the
fraction of our background galaxies that we reject because of
their shape quality being small, see figure ??).

5.2. 1D analysis

The first method to estimate the mass with the weak lensing sig-
nal is to determine the radial profil of the shear produced by the
cluster and fit it to analytical models. Although this technique is
very fast and easy to do, it needs some assumptions which makes
the results obtained not very reliable (e.g. spherical cluster, true
mass center, sampling effects, average on z and r, ...) so we have
to be carefull when using these results.
The observed shape of a background galaxy is described by its
ellipticity components (e1, e2) which can be linked to its true
shape (i.e. before being sheared) via a very simple relation (e.g.
Seitz & Schneider 97) :

e =
e(s) + g

1 + g∗e(s) (9)

with e = |e| exp(2iθ) the complexe ellipticity (θ being the po-
sition angle), g the reduce shear and g∗ its complex conjugate.
Notice that this relation is only valid if |g| < 1.
As we have no information on the true shape e(s) we need to
make the assumption that galaxies are randomly oriented which
leads, in absence of the cluster, to < e(s) >e∼ 0. So if we con-
sider a region of the sky where the shear has small variations, we
get < e >e= g (Schramm & Kayser 1995). This may be wrong
in the presence of dark matter filaments or any kind of large
scale structures behind the cluster as it could introduce intrinsic
alignments of the background galaxies. For field galaxies we can
consider that they are drawn from a Gaussian distribution with
an intrinsic dispersion in orientation and ellipticity (Ebbels PhD
–> cf these ML). So we will add an estimated error σe1,2 ∼ 0.2
to the mean errors on (e1, e2) when doing the radial bining.
For spherical models of a galaxy cluster, the shear is a tangen-
tial quantity. So, defining the radial and tangential component of
the galaxies ellipticites (e⊥, e‖), we expect to have < e⊥ >= 0
and < e‖ >= g. Given the position of a galaxy (i.e. α, its an-
gle relative to the x-axis) and it’s orientation (θ, the angle be-
tween the x-axis and its major axis), the ellipticity components
are e‖ = e cos(2β) and e⊥ = e sin(2β) where β = θ − α. So we
juste have to average e‖ in rings around the cluster center and fit
the obtained shear profil (i.e. < e‖ > (r)) to parametric models.
The < e⊥ > (r) profil is used as quality check of the data (as it
should be equal to 0 everywhere) : we fit the shear profil only
in the radii range where we have (< e‖ >)i > (< e⊥ >)i. The
binning is done in rings with a constant width of 100” and we fit
< e‖ >i to g(r) with r = 0.5(ri + ri+1). Actually what we mesure
doing a mean in rings is :

∫ ri+1

ri
2πrg(r)dr

∫ ri+1

ri
2πrdr

(10)

But, doing a radial binning is not critical where we usually per-
form the model fitting, e.g. r > 100′′ (underestimation of a few
% with a SIS with σ = 1500 km.s−1 at z=0.6 for a bin width
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ellipticity components (e1, e2) which can be linked to its true
shape (i.e. before being sheared) via a very simple relation (e.g.
Seitz & Schneider 97) :

e =
e(s) + g

1 + g∗e(s) (9)

with e = |e| exp(2iθ) the complexe ellipticity (θ being the po-
sition angle), g the reduce shear and g∗ its complex conjugate.
Notice that this relation is only valid if |g| < 1.
As we have no information on the true shape e(s) we need to
make the assumption that galaxies are randomly oriented which
leads, in absence of the cluster, to < e(s) >e∼ 0. So if we con-
sider a region of the sky where the shear has small variations, we
get < e >e= g (Schramm & Kayser 1995). This may be wrong
in the presence of dark matter filaments or any kind of large
scale structures behind the cluster as it could introduce intrinsic
alignments of the background galaxies. For field galaxies we can
consider that they are drawn from a Gaussian distribution with
an intrinsic dispersion in orientation and ellipticity (Ebbels PhD
–> cf these ML). So we will add an estimated error σe1,2 ∼ 0.2
to the mean errors on (e1, e2) when doing the radial bining.
For spherical models of a galaxy cluster, the shear is a tangen-
tial quantity. So, defining the radial and tangential component of
the galaxies ellipticites (e⊥, e‖), we expect to have < e⊥ >= 0
and < e‖ >= g. Given the position of a galaxy (i.e. α, its an-
gle relative to the x-axis) and it’s orientation (θ, the angle be-
tween the x-axis and its major axis), the ellipticity components
are e‖ = e cos(2β) and e⊥ = e sin(2β) where β = θ − α. So we
juste have to average e‖ in rings around the cluster center and fit
the obtained shear profil (i.e. < e‖ > (r)) to parametric models.
The < e⊥ > (r) profil is used as quality check of the data (as it
should be equal to 0 everywhere) : we fit the shear profil only
in the radii range where we have (< e‖ >)i > (< e⊥ >)i. The
binning is done in rings with a constant width of 100” and we fit
< e‖ >i to g(r) with r = 0.5(ri + ri+1). Actually what we mesure
doing a mean in rings is :

∫ ri+1

ri
2πrg(r)dr

∫ ri+1

ri
2πrdr

(10)

But, doing a radial binning is not critical where we usually per-
form the model fitting, e.g. r > 100′′ (underestimation of a few
% with a SIS with σ = 1500 km.s−1 at z=0.6 for a bin width
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Fig. 4. Overdensites in the photometric redshifts distribution for each
cluster. In each panel the vertical line shows the spectroscopic redshift
of the cluster.

When spectroscopic redshifts are available, we use them
in a z spec/z phot plot as a sanity check : we verify that
with the magnitude/color/photo z cuts we are not considering
foreground/cluster members as background galaxies.

Finally, we construct our background galaxies catalogue
using 3 selection tools :

– magnitude : 22 < mr < mcomp + 0.5;
– CMD : outside the red sequence;
– photo-z : Psup > 75%.

We expect these criteria to be strong enough to reduce the con-
tamination by foreground members (see table ?? for the final
galaxies density), estimated around 20%. We are also able to re-
move most of the cluster members (especially with the CMD) as
we can check on the remaining galaxies density profil which are
flat even near the cluster center.

4. Shape parameters

As it provides the best quality, the measurement of the shape of
the galaxies is done on the r’ band. The method is the same as
in Bardeau et al. 05 07 and is performed by using the Im2shape
software (Bridle et al. 01).

4.1. Im2shape

To do a lensing analysis, we need the ’real image’ of the
observed galaxies, i.e. corrected from the PSF (atmo-
sphere+instrument). Im2shape allows us to do this as it
convolves a galaxy model (defined as concentric elliptical
Gaussians) with the local PSF (also defined as Gaussians) and
estiamte the residuals (in terms of position, ellipticity, orien-
tation, size). Exploring the space parameters doing MCMC,
it gives the most likely model by minimizing these residuals
between the input model and the observed galaxy. Consequently
the first step is to determine the PSF field. This is done by
looking at the shape of the stars. As they should be seen as
points, i.e. as a δDirac, their observed shape give us an estimation
of the local PSF.
So we first run Im2shape on the stars, using only one Gaussian
for the shape of the model and a δDirac for the PSF. The resulting
shape parameters are then simply interpolated on each galaxy
position by averaging the ellipticities of the 5 nearest stars
(using more stars could over-smooth the psf) giving us the PSF
map.

4.2. STEP1

Now that we have an estimation of the psf field, we can
run Im2shape on all the galaxies. This kind of procedure has
been tested on the STEP1 simulations. These simulations were
builded in order to compare the accuracy of different lensing
method (see Heymans06 for more details). Briefly, it’s composed
by a set of 4096X4096 pixels images reproducing CFHTLS-like
observations. 6 types of PSF are combined with 5 types of shear
(κ = 0, γ1 = (0.0, 0.005, 0.01, 0.05, 0.1), γ2 = 0) giving 30 dif-
ferent data sets, each one containing 64 images. Each image has
a galaxy density ∼ 15arcmin−2 and a star density ∼ 10 arcmin−2.
For each data set, the mean shears γ1,2 are calculated (averaged
over the 64 images). Then, given a PSF type, the 5 different types
of shear are used to dertermine the best-fit parameters to :

γ1 − γtrue
1 = q(γtrue

1 )2 + mγtrue
1 + c1 (5)

c2 = < γ2 >

A linear reponse of the method to the shear would be caracter-
ized by q = 0. In the absence of shot noise and PSF systematics,
we would have c1 = 0 and we expect m = 0 for a method with-
out calibration bias. As the external applied shear γtrue

2 = 0 we
also expect to find c2 = 0. For methods with a fitted value q ∼ 0,
another fit to γ1 − γtrue

1 = mγtrue
1 + c1 is performed. Finally, a

measure of non-linearity < q >, calibration bias < m > and PSF
residuals σc =

√
σc1 + σc1 are deduced by averaging the values

of the fits over the different PSF types.
Once we have these values, we can compare our method to other
lensing method and to the implementation of Im2shape used for
STEP1, i.e. using 2 gaussians for the PSF and the shape of the
galaxies (we just use one for each in our analysis). As we can
see in figure ??, our method is not the best but nor the worst. We
are not in the 7% calibration bias region but not too far from it
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Fig. 4. Overdensites in the photometric redshifts distribution for each
cluster. In each panel the vertical line shows the spectroscopic redshift
of the cluster.

When spectroscopic redshifts are available, we use them
in a z spec/z phot plot as a sanity check : we verify that
with the magnitude/color/photo z cuts we are not considering
foreground/cluster members as background galaxies.

Finally, we construct our background galaxies catalogue
using 3 selection tools :

– magnitude : 22 < mr < mcomp + 0.5;
– CMD : outside the red sequence;
– photo-z : Psup > 75%.

We expect these criteria to be strong enough to reduce the con-
tamination by foreground members (see table ?? for the final
galaxies density), estimated around 20%. We are also able to re-
move most of the cluster members (especially with the CMD) as
we can check on the remaining galaxies density profil which are
flat even near the cluster center.

4. Shape parameters

As it provides the best quality, the measurement of the shape of
the galaxies is done on the r’ band. The method is the same as
in Bardeau et al. 05 07 and is performed by using the Im2shape
software (Bridle et al. 01).

4.1. Im2shape

To do a lensing analysis, we need the ’real image’ of the
observed galaxies, i.e. corrected from the PSF (atmo-
sphere+instrument). Im2shape allows us to do this as it
convolves a galaxy model (defined as concentric elliptical
Gaussians) with the local PSF (also defined as Gaussians) and
estiamte the residuals (in terms of position, ellipticity, orien-
tation, size). Exploring the space parameters doing MCMC,
it gives the most likely model by minimizing these residuals
between the input model and the observed galaxy. Consequently
the first step is to determine the PSF field. This is done by
looking at the shape of the stars. As they should be seen as
points, i.e. as a δDirac, their observed shape give us an estimation
of the local PSF.
So we first run Im2shape on the stars, using only one Gaussian
for the shape of the model and a δDirac for the PSF. The resulting
shape parameters are then simply interpolated on each galaxy
position by averaging the ellipticities of the 5 nearest stars
(using more stars could over-smooth the psf) giving us the PSF
map.

4.2. STEP1

Now that we have an estimation of the psf field, we can
run Im2shape on all the galaxies. This kind of procedure has
been tested on the STEP1 simulations. These simulations were
builded in order to compare the accuracy of different lensing
method (see Heymans06 for more details). Briefly, it’s composed
by a set of 4096X4096 pixels images reproducing CFHTLS-like
observations. 6 types of PSF are combined with 5 types of shear
(κ = 0, γ1 = (0.0, 0.005, 0.01, 0.05, 0.1), γ2 = 0) giving 30 dif-
ferent data sets, each one containing 64 images. Each image has
a galaxy density ∼ 15arcmin−2 and a star density ∼ 10 arcmin−2.
For each data set, the mean shears γ1,2 are calculated (averaged
over the 64 images). Then, given a PSF type, the 5 different types
of shear are used to dertermine the best-fit parameters to :

γ1 − γtrue
1 = q(γtrue

1 )2 + mγtrue
1 + c1 (5)

c2 = < γ2 >

A linear reponse of the method to the shear would be caracter-
ized by q = 0. In the absence of shot noise and PSF systematics,
we would have c1 = 0 and we expect m = 0 for a method with-
out calibration bias. As the external applied shear γtrue

2 = 0 we
also expect to find c2 = 0. For methods with a fitted value q ∼ 0,
another fit to γ1 − γtrue

1 = mγtrue
1 + c1 is performed. Finally, a

measure of non-linearity < q >, calibration bias < m > and PSF
residuals σc =

√
σc1 + σc1 are deduced by averaging the values

of the fits over the different PSF types.
Once we have these values, we can compare our method to other
lensing method and to the implementation of Im2shape used for
STEP1, i.e. using 2 gaussians for the PSF and the shape of the
galaxies (we just use one for each in our analysis). As we can
see in figure ??, our method is not the best but nor the worst. We
are not in the 7% calibration bias region but not too far from it
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5.1. Lens strengh

The observed reduce shear g depends on the system geometry,
i.e. the redshift of the lens zl and the source zs. We can rewrite the
shear and the convergence as a function of the geometrical factor
β = Da(zl, zs)/Da(0, zs) containing the redshift dependance (the
Da being angular diameter distances). The reduce shear then be-
comes (Hoekstra00):

g =
γ

1 − κ =
βsγ∞

1 − βsκ∞
(6)

where βs = β/β∞ = (Da(zl, zs)Da(0,∞))/(Da(0, zs)Da(zl,∞))
and γ∞, κ∞ are the shear and convergence for a source at an infi-
nite redshift.
So the question is how to deal with the fact that we don’t know
the redshift of the background galaxies. In the case of low red-
shift clusters (z ∼ 0.2), a good approximation is to put all galax-
ies at the same redshift (typically z ∼ 1) or determine the mean
redshift of the sources and use β(< z >) instead of < β(z) > aver-
aged on the redshift distribution of the sources. But, for clusters
with higher redshifts, this simplification doesn’t hold anymore as
the factor β covers a broader range of value for our background
galaxies redshifts. In this case we have to take the mean value
< β(z) > :

< β(z) >=

∫ zmax

zl
p(z)β(z)dz

∫ zmax

zl
p(z)dz

(7)

with p(z) the redshift distribution of the sources. What to choose
for this distribution ? 2 approaches can be used : take an ana-
lytic distribution (e.g. Gamma distribution) or use redshift sur-
veys an calculate < β> with this catalogue. In our analysis we
choose to use the CFHTLS Deep (T0004 release) photometric
redshifts produced with HyperZ (Pello09). These redshifts were
computed using 5 bands (with Megacam @ CFHT). They have
been well calibrated and validated with spectroscopic redshifts
so we can be confident when using them. For each cluster we
will apply the same cuts (magnitude, red sequence and clus-
ter redshift) we used to select the background galaxies to the
CFHTLS-D1 catalogue in order to estimate < β> on a similar
distribution (see table ?? for the value we obtain and the corre-
sponding effectif redshift ze f f defined as β(ze f f ) =< β >).
Using this method, i.e. using < β >, is still not completely
rigourous as pointed out in Hoekstra00, Seitz& Schneider97.
What we mesure is indeed the average reduce shear< g >, which
is not proportionnal to β :

< g >=

∫ zmax

zl

βs(z)γ∞
1−βs(z)κ∞ p(z)dz
∫ zmax

zl
p(z)dz

(8)

This quantity has to be compared to the one usually used, g =
<βs>γ∞

1−<βs>κ∞
. Taking the CFHTLS-D1 redshifts, we have compute

the ratio of these 2 quantites g(< β> )/ < g > for a SIS model
with different values of σ and for a lens at z=0.6. We deduce
that the approximation of using < β > instead of a redshift for
each galaxy introduce an underestimation less than 5% for a sin-
gular isothermal sphere with σ = 1500km.s−1 at a redshift of
0.6 (in the radii range of the weak lensing analysis, r > 100′′).
If we would use the region near the very center of the cluster
(r < 100′′), the shear would be too underestimate (strong lens-
ing). Therefore in all our analysis we will exclude all the back-
ground galaxies in this zone. As this underestimation grows with
the lens redshift as showed in Hoekstra00, for all our clusters we

won’t exceed this 5% of error (with the assumption that our clus-
ters have σ < 1500km.s−1) .
We have to notice here that in our background galaxies selection,
we have removed those with a bad shape estimation. Typically
these objects are the most distant galaxies. So it introduces a lit-
tle bias in determining the lens strengh with the previous method
but we expect this effect to be small and therefore negligible (the
fraction of our background galaxies that we reject because of
their shape quality being small, see figure ??).

5.2. 1D analysis

The first method to estimate the mass with the weak lensing sig-
nal is to determine the radial profil of the shear produced by the
cluster and fit it to analytical models. Although this technique is
very fast and easy to do, it needs some assumptions which makes
the results obtained not very reliable (e.g. spherical cluster, true
mass center, sampling effects, average on z and r, ...) so we have
to be carefull when using these results.
The observed shape of a background galaxy is described by its
ellipticity components (e1, e2) which can be linked to its true
shape (i.e. before being sheared) via a very simple relation (e.g.
Seitz & Schneider 97) :

e =
e(s) + g

1 + g∗e(s) (9)

with e = |e| exp(2iθ) the complexe ellipticity (θ being the po-
sition angle), g the reduce shear and g∗ its complex conjugate.
Notice that this relation is only valid if |g| < 1.
As we have no information on the true shape e(s) we need to
make the assumption that galaxies are randomly oriented which
leads, in absence of the cluster, to < e(s) >e∼ 0. So if we con-
sider a region of the sky where the shear has small variations, we
get < e >e= g (Schramm & Kayser 1995). This may be wrong
in the presence of dark matter filaments or any kind of large
scale structures behind the cluster as it could introduce intrinsic
alignments of the background galaxies. For field galaxies we can
consider that they are drawn from a Gaussian distribution with
an intrinsic dispersion in orientation and ellipticity (Ebbels PhD
–> cf these ML). So we will add an estimated error σe1,2 ∼ 0.2
to the mean errors on (e1, e2) when doing the radial bining.
For spherical models of a galaxy cluster, the shear is a tangen-
tial quantity. So, defining the radial and tangential component of
the galaxies ellipticites (e⊥, e‖), we expect to have < e⊥ >= 0
and < e‖ >= g. Given the position of a galaxy (i.e. α, its an-
gle relative to the x-axis) and it’s orientation (θ, the angle be-
tween the x-axis and its major axis), the ellipticity components
are e‖ = e cos(2β) and e⊥ = e sin(2β) where β = θ − α. So we
juste have to average e‖ in rings around the cluster center and fit
the obtained shear profil (i.e. < e‖ > (r)) to parametric models.
The < e⊥ > (r) profil is used as quality check of the data (as it
should be equal to 0 everywhere) : we fit the shear profil only
in the radii range where we have (< e‖ >)i > (< e⊥ >)i. The
binning is done in rings with a constant width of 100” and we fit
< e‖ >i to g(r) with r = 0.5(ri + ri+1). Actually what we mesure
doing a mean in rings is :

∫ ri+1

ri
2πrg(r)dr

∫ ri+1

ri
2πrdr

(10)

But, doing a radial binning is not critical where we usually per-
form the model fitting, e.g. r > 100′′ (underestimation of a few
% with a SIS with σ = 1500 km.s−1 at z=0.6 for a bin width

average of BG galaxies : <g(z)> ~ <ɣ(z)> = <β(z)>.ɣ∞

low zl :   <β(z)> ~ β(<z>) ~ β(1)

high zl : 
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i.e. the redshift of the lens zl and the source zs. We can rewrite the
shear and the convergence as a function of the geometrical factor
β = Da(zl, zs)/Da(0, zs) containing the redshift dependance (the
Da being angular diameter distances). The reduce shear then be-
comes (Hoekstra00):

g =
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1 − κ =
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where βs = β/β∞ = (Da(zl, zs)Da(0,∞))/(Da(0, zs)Da(zl,∞))
and γ∞, κ∞ are the shear and convergence for a source at an infi-
nite redshift.
So the question is how to deal with the fact that we don’t know
the redshift of the background galaxies. In the case of low red-
shift clusters (z ∼ 0.2), a good approximation is to put all galax-
ies at the same redshift (typically z ∼ 1) or determine the mean
redshift of the sources and use β(< z >) instead of < β(z) > aver-
aged on the redshift distribution of the sources. But, for clusters
with higher redshifts, this simplification doesn’t hold anymore as
the factor β covers a broader range of value for our background
galaxies redshifts. In this case we have to take the mean value
< β(z) > :

< β(z) >=

∫ zmax
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(7)

with p(z) the redshift distribution of the sources. What to choose
for this distribution ? 2 approaches can be used : take an ana-
lytic distribution (e.g. Gamma distribution) or use redshift sur-
veys an calculate < β> with this catalogue. In our analysis we
choose to use the CFHTLS Deep (T0004 release) photometric
redshifts produced with HyperZ (Pello09). These redshifts were
computed using 5 bands (with Megacam @ CFHT). They have
been well calibrated and validated with spectroscopic redshifts
so we can be confident when using them. For each cluster we
will apply the same cuts (magnitude, red sequence and clus-
ter redshift) we used to select the background galaxies to the
CFHTLS-D1 catalogue in order to estimate < β> on a similar
distribution (see table ?? for the value we obtain and the corre-
sponding effectif redshift ze f f defined as β(ze f f ) =< β >).
Using this method, i.e. using < β >, is still not completely
rigourous as pointed out in Hoekstra00, Seitz& Schneider97.
What we mesure is indeed the average reduce shear< g >, which
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. Taking the CFHTLS-D1 redshifts, we have compute

the ratio of these 2 quantites g(< β> )/ < g > for a SIS model
with different values of σ and for a lens at z=0.6. We deduce
that the approximation of using < β > instead of a redshift for
each galaxy introduce an underestimation less than 5% for a sin-
gular isothermal sphere with σ = 1500km.s−1 at a redshift of
0.6 (in the radii range of the weak lensing analysis, r > 100′′).
If we would use the region near the very center of the cluster
(r < 100′′), the shear would be too underestimate (strong lens-
ing). Therefore in all our analysis we will exclude all the back-
ground galaxies in this zone. As this underestimation grows with
the lens redshift as showed in Hoekstra00, for all our clusters we

won’t exceed this 5% of error (with the assumption that our clus-
ters have σ < 1500km.s−1) .
We have to notice here that in our background galaxies selection,
we have removed those with a bad shape estimation. Typically
these objects are the most distant galaxies. So it introduces a lit-
tle bias in determining the lens strengh with the previous method
but we expect this effect to be small and therefore negligible (the
fraction of our background galaxies that we reject because of
their shape quality being small, see figure ??).

5.2. 1D analysis

The first method to estimate the mass with the weak lensing sig-
nal is to determine the radial profil of the shear produced by the
cluster and fit it to analytical models. Although this technique is
very fast and easy to do, it needs some assumptions which makes
the results obtained not very reliable (e.g. spherical cluster, true
mass center, sampling effects, average on z and r, ...) so we have
to be carefull when using these results.
The observed shape of a background galaxy is described by its
ellipticity components (e1, e2) which can be linked to its true
shape (i.e. before being sheared) via a very simple relation (e.g.
Seitz & Schneider 97) :

e =
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with e = |e| exp(2iθ) the complexe ellipticity (θ being the po-
sition angle), g the reduce shear and g∗ its complex conjugate.
Notice that this relation is only valid if |g| < 1.
As we have no information on the true shape e(s) we need to
make the assumption that galaxies are randomly oriented which
leads, in absence of the cluster, to < e(s) >e∼ 0. So if we con-
sider a region of the sky where the shear has small variations, we
get < e >e= g (Schramm & Kayser 1995). This may be wrong
in the presence of dark matter filaments or any kind of large
scale structures behind the cluster as it could introduce intrinsic
alignments of the background galaxies. For field galaxies we can
consider that they are drawn from a Gaussian distribution with
an intrinsic dispersion in orientation and ellipticity (Ebbels PhD
–> cf these ML). So we will add an estimated error σe1,2 ∼ 0.2
to the mean errors on (e1, e2) when doing the radial bining.
For spherical models of a galaxy cluster, the shear is a tangen-
tial quantity. So, defining the radial and tangential component of
the galaxies ellipticites (e⊥, e‖), we expect to have < e⊥ >= 0
and < e‖ >= g. Given the position of a galaxy (i.e. α, its an-
gle relative to the x-axis) and it’s orientation (θ, the angle be-
tween the x-axis and its major axis), the ellipticity components
are e‖ = e cos(2β) and e⊥ = e sin(2β) where β = θ − α. So we
juste have to average e‖ in rings around the cluster center and fit
the obtained shear profil (i.e. < e‖ > (r)) to parametric models.
The < e⊥ > (r) profil is used as quality check of the data (as it
should be equal to 0 everywhere) : we fit the shear profil only
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5.1. Lens strengh

The observed reduce shear g depends on the system geometry,
i.e. the redshift of the lens zl and the source zs. We can rewrite the
shear and the convergence as a function of the geometrical factor
β = Da(zl, zs)/Da(0, zs) containing the redshift dependance (the
Da being angular diameter distances). The reduce shear then be-
comes (Hoekstra00):

g =
γ

1 − κ =
βsγ∞

1 − βsκ∞
(6)

where βs = β/β∞ = (Da(zl, zs)Da(0,∞))/(Da(0, zs)Da(zl,∞))
and γ∞, κ∞ are the shear and convergence for a source at an infi-
nite redshift.
So the question is how to deal with the fact that we don’t know
the redshift of the background galaxies. In the case of low red-
shift clusters (z ∼ 0.2), a good approximation is to put all galax-
ies at the same redshift (typically z ∼ 1) or determine the mean
redshift of the sources and use β(< z >) instead of < β(z) > aver-
aged on the redshift distribution of the sources. But, for clusters
with higher redshifts, this simplification doesn’t hold anymore as
the factor β covers a broader range of value for our background
galaxies redshifts. In this case we have to take the mean value
< β(z) > :

< β(z) >=

∫ zmax

zl
p(z)β(z)dz

∫ zmax

zl
p(z)dz

(7)

with p(z) the redshift distribution of the sources. What to choose
for this distribution ? 2 approaches can be used : take an ana-
lytic distribution (e.g. Gamma distribution) or use redshift sur-
veys an calculate < β> with this catalogue. In our analysis we
choose to use the CFHTLS Deep (T0004 release) photometric
redshifts produced with HyperZ (Pello09). These redshifts were
computed using 5 bands (with Megacam @ CFHT). They have
been well calibrated and validated with spectroscopic redshifts
so we can be confident when using them. For each cluster we
will apply the same cuts (magnitude, red sequence and clus-
ter redshift) we used to select the background galaxies to the
CFHTLS-D1 catalogue in order to estimate < β> on a similar
distribution (see table ?? for the value we obtain and the corre-
sponding effectif redshift ze f f defined as β(ze f f ) =< β >).
Using this method, i.e. using < β >, is still not completely
rigourous as pointed out in Hoekstra00, Seitz& Schneider97.
What we mesure is indeed the average reduce shear< g >, which
is not proportionnal to β :

< g >=

∫ zmax

zl

βs(z)γ∞
1−βs(z)κ∞ p(z)dz
∫ zmax

zl
p(z)dz

(8)

This quantity has to be compared to the one usually used, g =
<βs>γ∞

1−<βs>κ∞
. Taking the CFHTLS-D1 redshifts, we have compute

the ratio of these 2 quantites g(< β> )/ < g > for a SIS model
with different values of σ and for a lens at z=0.6. We deduce
that the approximation of using < β > instead of a redshift for
each galaxy introduce an underestimation less than 5% for a sin-
gular isothermal sphere with σ = 1500km.s−1 at a redshift of
0.6 (in the radii range of the weak lensing analysis, r > 100′′).
If we would use the region near the very center of the cluster
(r < 100′′), the shear would be too underestimate (strong lens-
ing). Therefore in all our analysis we will exclude all the back-
ground galaxies in this zone. As this underestimation grows with
the lens redshift as showed in Hoekstra00, for all our clusters we

won’t exceed this 5% of error (with the assumption that our clus-
ters have σ < 1500km.s−1) .
We have to notice here that in our background galaxies selection,
we have removed those with a bad shape estimation. Typically
these objects are the most distant galaxies. So it introduces a lit-
tle bias in determining the lens strengh with the previous method
but we expect this effect to be small and therefore negligible (the
fraction of our background galaxies that we reject because of
their shape quality being small, see figure ??).

5.2. 1D analysis

The first method to estimate the mass with the weak lensing sig-
nal is to determine the radial profil of the shear produced by the
cluster and fit it to analytical models. Although this technique is
very fast and easy to do, it needs some assumptions which makes
the results obtained not very reliable (e.g. spherical cluster, true
mass center, sampling effects, average on z and r, ...) so we have
to be carefull when using these results.
The observed shape of a background galaxy is described by its
ellipticity components (e1, e2) which can be linked to its true
shape (i.e. before being sheared) via a very simple relation (e.g.
Seitz & Schneider 97) :

e =
e(s) + g

1 + g∗e(s) (9)

with e = |e| exp(2iθ) the complexe ellipticity (θ being the po-
sition angle), g the reduce shear and g∗ its complex conjugate.
Notice that this relation is only valid if |g| < 1.
As we have no information on the true shape e(s) we need to
make the assumption that galaxies are randomly oriented which
leads, in absence of the cluster, to < e(s) >e∼ 0. So if we con-
sider a region of the sky where the shear has small variations, we
get < e >e= g (Schramm & Kayser 1995). This may be wrong
in the presence of dark matter filaments or any kind of large
scale structures behind the cluster as it could introduce intrinsic
alignments of the background galaxies. For field galaxies we can
consider that they are drawn from a Gaussian distribution with
an intrinsic dispersion in orientation and ellipticity (Ebbels PhD
–> cf these ML). So we will add an estimated error σe1,2 ∼ 0.2
to the mean errors on (e1, e2) when doing the radial bining.
For spherical models of a galaxy cluster, the shear is a tangen-
tial quantity. So, defining the radial and tangential component of
the galaxies ellipticites (e⊥, e‖), we expect to have < e⊥ >= 0
and < e‖ >= g. Given the position of a galaxy (i.e. α, its an-
gle relative to the x-axis) and it’s orientation (θ, the angle be-
tween the x-axis and its major axis), the ellipticity components
are e‖ = e cos(2β) and e⊥ = e sin(2β) where β = θ − α. So we
juste have to average e‖ in rings around the cluster center and fit
the obtained shear profil (i.e. < e‖ > (r)) to parametric models.
The < e⊥ > (r) profil is used as quality check of the data (as it
should be equal to 0 everywhere) : we fit the shear profil only
in the radii range where we have (< e‖ >)i > (< e⊥ >)i. The
binning is done in rings with a constant width of 100” and we fit
< e‖ >i to g(r) with r = 0.5(ri + ri+1). Actually what we mesure
doing a mean in rings is :

∫ ri+1

ri
2πrg(r)dr

∫ ri+1

ri
2πrdr

(10)

But, doing a radial binning is not critical where we usually per-
form the model fitting, e.g. r > 100′′ (underestimation of a few
% with a SIS with σ = 1500 km.s−1 at z=0.6 for a bin width

average of BG galaxies : <g(z)> ~ <ɣ(z)> = <β(z)>.ɣ∞

low zl :   <β(z)> ~ β(<z>) ~ β(1)

high zl : 

G. Foëx et al.: A step towards determining precise scaling relations 7

5.1. Lens strengh

The observed reduce shear g depends on the system geometry,
i.e. the redshift of the lens zl and the source zs. We can rewrite the
shear and the convergence as a function of the geometrical factor
β = Da(zl, zs)/Da(0, zs) containing the redshift dependance (the
Da being angular diameter distances). The reduce shear then be-
comes (Hoekstra00):

g =
γ

1 − κ =
βsγ∞

1 − βsκ∞
(6)

where βs = β/β∞ = (Da(zl, zs)Da(0,∞))/(Da(0, zs)Da(zl,∞))
and γ∞, κ∞ are the shear and convergence for a source at an infi-
nite redshift.
So the question is how to deal with the fact that we don’t know
the redshift of the background galaxies. In the case of low red-
shift clusters (z ∼ 0.2), a good approximation is to put all galax-
ies at the same redshift (typically z ∼ 1) or determine the mean
redshift of the sources and use β(< z >) instead of < β(z) > aver-
aged on the redshift distribution of the sources. But, for clusters
with higher redshifts, this simplification doesn’t hold anymore as
the factor β covers a broader range of value for our background
galaxies redshifts. In this case we have to take the mean value
< β(z) > :

< β(z) >=

∫ zmax

zl
p(z)β(z)dz

∫ zmax

zl
p(z)dz

(7)

with p(z) the redshift distribution of the sources. What to choose
for this distribution ? 2 approaches can be used : take an ana-
lytic distribution (e.g. Gamma distribution) or use redshift sur-
veys an calculate < β> with this catalogue. In our analysis we
choose to use the CFHTLS Deep (T0004 release) photometric
redshifts produced with HyperZ (Pello09). These redshifts were
computed using 5 bands (with Megacam @ CFHT). They have
been well calibrated and validated with spectroscopic redshifts
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the ratio of these 2 quantites g(< β> )/ < g > for a SIS model
with different values of σ and for a lens at z=0.6. We deduce
that the approximation of using < β > instead of a redshift for
each galaxy introduce an underestimation less than 5% for a sin-
gular isothermal sphere with σ = 1500km.s−1 at a redshift of
0.6 (in the radii range of the weak lensing analysis, r > 100′′).
If we would use the region near the very center of the cluster
(r < 100′′), the shear would be too underestimate (strong lens-
ing). Therefore in all our analysis we will exclude all the back-
ground galaxies in this zone. As this underestimation grows with
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ters have σ < 1500km.s−1) .
We have to notice here that in our background galaxies selection,
we have removed those with a bad shape estimation. Typically
these objects are the most distant galaxies. So it introduces a lit-
tle bias in determining the lens strengh with the previous method
but we expect this effect to be small and therefore negligible (the
fraction of our background galaxies that we reject because of
their shape quality being small, see figure ??).
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The first method to estimate the mass with the weak lensing sig-
nal is to determine the radial profil of the shear produced by the
cluster and fit it to analytical models. Although this technique is
very fast and easy to do, it needs some assumptions which makes
the results obtained not very reliable (e.g. spherical cluster, true
mass center, sampling effects, average on z and r, ...) so we have
to be carefull when using these results.
The observed shape of a background galaxy is described by its
ellipticity components (e1, e2) which can be linked to its true
shape (i.e. before being sheared) via a very simple relation (e.g.
Seitz & Schneider 97) :

e =
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1 + g∗e(s) (9)

with e = |e| exp(2iθ) the complexe ellipticity (θ being the po-
sition angle), g the reduce shear and g∗ its complex conjugate.
Notice that this relation is only valid if |g| < 1.
As we have no information on the true shape e(s) we need to
make the assumption that galaxies are randomly oriented which
leads, in absence of the cluster, to < e(s) >e∼ 0. So if we con-
sider a region of the sky where the shear has small variations, we
get < e >e= g (Schramm & Kayser 1995). This may be wrong
in the presence of dark matter filaments or any kind of large
scale structures behind the cluster as it could introduce intrinsic
alignments of the background galaxies. For field galaxies we can
consider that they are drawn from a Gaussian distribution with
an intrinsic dispersion in orientation and ellipticity (Ebbels PhD
–> cf these ML). So we will add an estimated error σe1,2 ∼ 0.2
to the mean errors on (e1, e2) when doing the radial bining.
For spherical models of a galaxy cluster, the shear is a tangen-
tial quantity. So, defining the radial and tangential component of
the galaxies ellipticites (e⊥, e‖), we expect to have < e⊥ >= 0
and < e‖ >= g. Given the position of a galaxy (i.e. α, its an-
gle relative to the x-axis) and it’s orientation (θ, the angle be-
tween the x-axis and its major axis), the ellipticity components
are e‖ = e cos(2β) and e⊥ = e sin(2β) where β = θ − α. So we
juste have to average e‖ in rings around the cluster center and fit
the obtained shear profil (i.e. < e‖ > (r)) to parametric models.
The < e⊥ > (r) profil is used as quality check of the data (as it
should be equal to 0 everywhere) : we fit the shear profil only
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But, doing a radial binning is not critical where we usually per-
form the model fitting, e.g. r > 100′′ (underestimation of a few
% with a SIS with σ = 1500 km.s−1 at z=0.6 for a bin width
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dle et al. 2001, Paper II) we presented a maximum-entropy
inverse method for reconstructing the mass distribution in
clusters using shear and/or magnification data. In this pa-
per we extend our method to give a fuller Bayesian analysis.
As noted by other authors (Seitz et al. 1998), it would be
desirable to work with each background galaxy shape indi-
vidually, rather than binning or smoothing the data. This
issue, together with the problem of the angular resolution of
the reconstruction, is addressed by our extended algorithm.
We apply our improved method to both realistic synthetic
data, and previously published data for the high-redshift
cluster MS1054-03. As with any Bayesian analysis, the aim
is to derive and interpret the full posterior probability distri-
bution of the quantity being inferred (in this case the mass
distribution and any associated parameters). This approach
will provide us not just with a mapping procedure, but also
valuable insight into the quality of the data itself.

The method is reviewed and further developed in Sec-
tion 2, and is applied to simulated data in Section 3. Sec-
tion 4 contains the results of our method applied to the
well-documented cluster MS1054-03, and gives a brief com-
parison with the previously published work. Our conclusions
are presented in Section 5.

2 METHOD

The basis of the weak lensing reconstruction method de-
scribed here is essentially that of Paper I; this section
presents several developments in the algorithm and its im-
plementation.

A trial mass distribution Σ(θ) is used to generate a
predicted reduced shear field g(θ) through the convolu-
tion (Kaiser & Squires 1993, Paper I)

g(θ) =
1

1 − κ(θ)
·

1
π

∫

D(θ − θ
′)κ(θ′)d2

θ
′, (1)

where the convergence κ(θ) = Σ(θ)/Σcrit(θ) and Σcrit is a
factor dependent on the lens and source redshifts.

By design the lensing convolution kernel D is a complex
quantity that picks out the two types of lensing distortion
g1 = Re(g) and g2 = Im(g). Unbiased estimates of these
components of reduced shear are given by the ensemble av-
erage of the background galaxy image ellipticity parameters
ε1 and ε2 (Schramm & Kayser 1995).

As in Papers I and II, we aim to reconstruct the pro-
jected mass density of the lens defined on a grid of square
pixels, where the observing region occupies a smaller area
within this grid. This allows for the fact that the mass out-
side the observed field affects the shear data inside. It has
been noted (Seitz et al. 1998) that reconstructing the pro-
jected lensing potential allows a purely local estimate of the
mass distribution to be derived, by numerical differentia-
tion of the potential. This last step involves throwing away
a small amount of information, that which describes the
mass distribution outside the observing field. Although, as
Seitz et al. point out, this information is limited, we feel it is
as well to try and include it for completeness. In most cases,
the cluster being studied will lie completely within the ob-
serving field and the two reconstruction approaches should
produce indistiguishable results; it is then a matter of taste

as to which quanitity is inferred. Since here we are inter-
ested in the masses of clusters, we choose to reconstruct the
surface mass density directly, leading to simply-estimated
projected masses with well-understood derived uncertain-
ties.

2.1 Using individual galaxy shapes

In Paper I, the predicted reduced shear was compared with
measured galaxy ellipticities averaged in coarse grid cells.
Following Seitz et al. (1998), we prefer to use each galaxy
shape individually, as independent estimators of the reduced
shear. This procedure removes the potential problem of the
bin boundaries affecting the inferred mass distribution, al-
lows for optimal angular resolution in the reconstruction,
and leaves the data in as pure a form as possible. The re-
construction grid pixel size is chosen to have approximately
1 galaxy per pixel, leading to comparable numbers of data
points and fitted parameters. However, each data point has
a very low signal-to-noise ratio, indicating that the number
of parameters should be reduced in some way – this issue
is addressed in the next section. The convolution of Eq. (1)
is performed using Fast Fourier Transforms, and the result-
ing reduced shear field is interpolated onto the background
galaxy positions.

Each of the 2N lensed ellipticity components εj of the N
measured background galaxy images are taken as having
been drawn independently from a Gaussian distribution
with mean gj and variance σ2

intrinsic; here gj is the true value
of the jth component of reduced shear at the position of the
galaxy. We can then write the likelihood function as

Pr(Data|Σ) =
1

ZL
exp(−

χ2

2
) (2)

where χ2 is the usual misfit statistic

χ2 =

N
∑

i=1

2
∑

j=1

(εj,i − gj,i)
2

σ2
, (3)

and the normalisation factor is

ZL = (2πσ2)
2N

2 (4)

The effect of errors introduced by the galaxy shape es-
timation procedure have been included by adding them in
quadrature to the intrinsic elipticity dispersion (Hoekstra
et al. 2000),

σ =
√

σ2
obs + σ2

intrinsic (5)

This approximation rests on the assumption that both the
shape estimation error and the unlensed ellipticity distri-
butions are fitted well by Gaussians, and that the applied
reduced shear is not too large. We follow Schneider et al.
(2000) and correct the width of the ellipticity distributions
by a factor of (1 − |g|2) to account for the non-linearity
in the lensing transformation (equation 12 below). We are
concerned here with sub-critical clusters for which this cor-
rection factor is small; in principle, the likelihood may be
refined to include other effects as well. In practice, we find
that this particular correction makes little difference to the
reconstructions.
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dle et al. 2001, Paper II) we presented a maximum-entropy
inverse method for reconstructing the mass distribution in
clusters using shear and/or magnification data. In this pa-
per we extend our method to give a fuller Bayesian analysis.
As noted by other authors (Seitz et al. 1998), it would be
desirable to work with each background galaxy shape indi-
vidually, rather than binning or smoothing the data. This
issue, together with the problem of the angular resolution of
the reconstruction, is addressed by our extended algorithm.
We apply our improved method to both realistic synthetic
data, and previously published data for the high-redshift
cluster MS1054-03. As with any Bayesian analysis, the aim
is to derive and interpret the full posterior probability distri-
bution of the quantity being inferred (in this case the mass
distribution and any associated parameters). This approach
will provide us not just with a mapping procedure, but also
valuable insight into the quality of the data itself.

The method is reviewed and further developed in Sec-
tion 2, and is applied to simulated data in Section 3. Sec-
tion 4 contains the results of our method applied to the
well-documented cluster MS1054-03, and gives a brief com-
parison with the previously published work. Our conclusions
are presented in Section 5.

2 METHOD

The basis of the weak lensing reconstruction method de-
scribed here is essentially that of Paper I; this section
presents several developments in the algorithm and its im-
plementation.

A trial mass distribution Σ(θ) is used to generate a
predicted reduced shear field g(θ) through the convolu-
tion (Kaiser & Squires 1993, Paper I)

g(θ) =
1

1 − κ(θ)
·

1
π

∫

D(θ − θ
′)κ(θ′)d2

θ
′, (1)

where the convergence κ(θ) = Σ(θ)/Σcrit(θ) and Σcrit is a
factor dependent on the lens and source redshifts.

By design the lensing convolution kernel D is a complex
quantity that picks out the two types of lensing distortion
g1 = Re(g) and g2 = Im(g). Unbiased estimates of these
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projected masses with well-understood derived uncertain-
ties.

2.1 Using individual galaxy shapes

In Paper I, the predicted reduced shear was compared with
measured galaxy ellipticities averaged in coarse grid cells.
Following Seitz et al. (1998), we prefer to use each galaxy
shape individually, as independent estimators of the reduced
shear. This procedure removes the potential problem of the
bin boundaries affecting the inferred mass distribution, al-
lows for optimal angular resolution in the reconstruction,
and leaves the data in as pure a form as possible. The re-
construction grid pixel size is chosen to have approximately
1 galaxy per pixel, leading to comparable numbers of data
points and fitted parameters. However, each data point has
a very low signal-to-noise ratio, indicating that the number
of parameters should be reduced in some way – this issue
is addressed in the next section. The convolution of Eq. (1)
is performed using Fast Fourier Transforms, and the result-
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galaxy positions.
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The effect of errors introduced by the galaxy shape es-
timation procedure have been included by adding them in
quadrature to the intrinsic elipticity dispersion (Hoekstra
et al. 2000),

σ =
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This approximation rests on the assumption that both the
shape estimation error and the unlensed ellipticity distri-
butions are fitted well by Gaussians, and that the applied
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vidually, rather than binning or smoothing the data. This
issue, together with the problem of the angular resolution of
the reconstruction, is addressed by our extended algorithm.
We apply our improved method to both realistic synthetic
data, and previously published data for the high-redshift
cluster MS1054-03. As with any Bayesian analysis, the aim
is to derive and interpret the full posterior probability distri-
bution of the quantity being inferred (in this case the mass
distribution and any associated parameters). This approach
will provide us not just with a mapping procedure, but also
valuable insight into the quality of the data itself.

The method is reviewed and further developed in Sec-
tion 2, and is applied to simulated data in Section 3. Sec-
tion 4 contains the results of our method applied to the
well-documented cluster MS1054-03, and gives a brief com-
parison with the previously published work. Our conclusions
are presented in Section 5.

2 METHOD

The basis of the weak lensing reconstruction method de-
scribed here is essentially that of Paper I; this section
presents several developments in the algorithm and its im-
plementation.

A trial mass distribution Σ(θ) is used to generate a
predicted reduced shear field g(θ) through the convolu-
tion (Kaiser & Squires 1993, Paper I)

g(θ) =
1

1 − κ(θ)
·

1
π

∫

D(θ − θ
′)κ(θ′)d2

θ
′, (1)

where the convergence κ(θ) = Σ(θ)/Σcrit(θ) and Σcrit is a
factor dependent on the lens and source redshifts.

By design the lensing convolution kernel D is a complex
quantity that picks out the two types of lensing distortion
g1 = Re(g) and g2 = Im(g). Unbiased estimates of these
components of reduced shear are given by the ensemble av-
erage of the background galaxy image ellipticity parameters
ε1 and ε2 (Schramm & Kayser 1995).

As in Papers I and II, we aim to reconstruct the pro-
jected mass density of the lens defined on a grid of square
pixels, where the observing region occupies a smaller area
within this grid. This allows for the fact that the mass out-
side the observed field affects the shear data inside. It has
been noted (Seitz et al. 1998) that reconstructing the pro-
jected lensing potential allows a purely local estimate of the
mass distribution to be derived, by numerical differentia-
tion of the potential. This last step involves throwing away
a small amount of information, that which describes the
mass distribution outside the observing field. Although, as
Seitz et al. point out, this information is limited, we feel it is
as well to try and include it for completeness. In most cases,
the cluster being studied will lie completely within the ob-
serving field and the two reconstruction approaches should
produce indistiguishable results; it is then a matter of taste

as to which quanitity is inferred. Since here we are inter-
ested in the masses of clusters, we choose to reconstruct the
surface mass density directly, leading to simply-estimated
projected masses with well-understood derived uncertain-
ties.

2.1 Using individual galaxy shapes

In Paper I, the predicted reduced shear was compared with
measured galaxy ellipticities averaged in coarse grid cells.
Following Seitz et al. (1998), we prefer to use each galaxy
shape individually, as independent estimators of the reduced
shear. This procedure removes the potential problem of the
bin boundaries affecting the inferred mass distribution, al-
lows for optimal angular resolution in the reconstruction,
and leaves the data in as pure a form as possible. The re-
construction grid pixel size is chosen to have approximately
1 galaxy per pixel, leading to comparable numbers of data
points and fitted parameters. However, each data point has
a very low signal-to-noise ratio, indicating that the number
of parameters should be reduced in some way – this issue
is addressed in the next section. The convolution of Eq. (1)
is performed using Fast Fourier Transforms, and the result-
ing reduced shear field is interpolated onto the background
galaxy positions.

Each of the 2N lensed ellipticity components εj of the N
measured background galaxy images are taken as having
been drawn independently from a Gaussian distribution
with mean gj and variance σ2

intrinsic; here gj is the true value
of the jth component of reduced shear at the position of the
galaxy. We can then write the likelihood function as

Pr(Data|Σ) =
1

ZL
exp(−

χ2

2
) (2)

where χ2 is the usual misfit statistic

χ2 =

N
∑

i=1

2
∑

j=1

(εj,i − gj,i)
2

σ2
, (3)

and the normalisation factor is

ZL = (2πσ2)
2N

2 (4)

The effect of errors introduced by the galaxy shape es-
timation procedure have been included by adding them in
quadrature to the intrinsic elipticity dispersion (Hoekstra
et al. 2000),

σ =
√

σ2
obs + σ2

intrinsic (5)

This approximation rests on the assumption that both the
shape estimation error and the unlensed ellipticity distri-
butions are fitted well by Gaussians, and that the applied
reduced shear is not too large. We follow Schneider et al.
(2000) and correct the width of the ellipticity distributions
by a factor of (1 − |g|2) to account for the non-linearity
in the lensing transformation (equation 12 below). We are
concerned here with sub-critical clusters for which this cor-
rection factor is small; in principle, the likelihood may be
refined to include other effects as well. In practice, we find
that this particular correction makes little difference to the
reconstructions.
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5.1. Lens strengh

The observed reduce shear g depends on the system geometry,
i.e. the redshift of the lens zl and the source zs. We can rewrite the
shear and the convergence as a function of the geometrical factor
β = Da(zl, zs)/Da(0, zs) containing the redshift dependance (the
Da being angular diameter distances). The reduce shear then be-
comes (Hoekstra00):

g =
γ

1 − κ =
βsγ∞

1 − βsκ∞
(6)

where βs = β/β∞ = (Da(zl, zs)Da(0,∞))/(Da(0, zs)Da(zl,∞))
and γ∞, κ∞ are the shear and convergence for a source at an infi-
nite redshift.
So the question is how to deal with the fact that we don’t know
the redshift of the background galaxies. In the case of low red-
shift clusters (z ∼ 0.2), a good approximation is to put all galax-
ies at the same redshift (typically z ∼ 1) or determine the mean
redshift of the sources and use β(< z >) instead of < β(z) > aver-
aged on the redshift distribution of the sources. But, for clusters
with higher redshifts, this simplification doesn’t hold anymore as
the factor β covers a broader range of value for our background
galaxies redshifts. In this case we have to take the mean value
< β(z) > :

< β(z) >=

∫ zmax

zl
p(z)β(z)dz

∫ zmax

zl
p(z)dz

(7)

with p(z) the redshift distribution of the sources. What to choose
for this distribution ? 2 approaches can be used : take an ana-
lytic distribution (e.g. Gamma distribution) or use redshift sur-
veys an calculate < β> with this catalogue. In our analysis we
choose to use the CFHTLS Deep (T0004 release) photometric
redshifts produced with HyperZ (Pello09). These redshifts were
computed using 5 bands (with Megacam @ CFHT). They have
been well calibrated and validated with spectroscopic redshifts
so we can be confident when using them. For each cluster we
will apply the same cuts (magnitude, red sequence and clus-
ter redshift) we used to select the background galaxies to the
CFHTLS-D1 catalogue in order to estimate < β> on a similar
distribution (see table ?? for the value we obtain and the corre-
sponding effectif redshift ze f f defined as β(ze f f ) =< β >).
Using this method, i.e. using < β >, is still not completely
rigourous as pointed out in Hoekstra00, Seitz& Schneider97.
What we mesure is indeed the average reduce shear< g >, which
is not proportionnal to β :

< g >=

∫ zmax

zl

βs(z)γ∞
1−βs(z)κ∞ p(z)dz
∫ zmax

zl
p(z)dz

(8)

This quantity has to be compared to the one usually used, g =
<βs>γ∞

1−<βs>κ∞
. Taking the CFHTLS-D1 redshifts, we have compute

the ratio of these 2 quantites g(< β> )/ < g > for a SIS model
with different values of σ and for a lens at z=0.6. We deduce
that the approximation of using < β > instead of a redshift for
each galaxy introduce an underestimation less than 5% for a sin-
gular isothermal sphere with σ = 1500km.s−1 at a redshift of
0.6 (in the radii range of the weak lensing analysis, r > 100′′).
If we would use the region near the very center of the cluster
(r < 100′′), the shear would be too underestimate (strong lens-
ing). Therefore in all our analysis we will exclude all the back-
ground galaxies in this zone. As this underestimation grows with
the lens redshift as showed in Hoekstra00, for all our clusters we

won’t exceed this 5% of error (with the assumption that our clus-
ters have σ < 1500km.s−1) .
We have to notice here that in our background galaxies selection,
we have removed those with a bad shape estimation. Typically
these objects are the most distant galaxies. So it introduces a lit-
tle bias in determining the lens strengh with the previous method
but we expect this effect to be small and therefore negligible (the
fraction of our background galaxies that we reject because of
their shape quality being small, see figure ??).

5.2. 1D analysis

The first method to estimate the mass with the weak lensing sig-
nal is to determine the radial profil of the shear produced by the
cluster and fit it to analytical models. Although this technique is
very fast and easy to do, it needs some assumptions which makes
the results obtained not very reliable (e.g. spherical cluster, true
mass center, sampling effects, average on z and r, ...) so we have
to be carefull when using these results.
The observed shape of a background galaxy is described by its
ellipticity components (e1, e2) which can be linked to its true
shape (i.e. before being sheared) via a very simple relation (e.g.
Seitz & Schneider 97) :

e =
e(s) + g

1 + g∗e(s) (9)

with e = |e| exp(2iθ) the complexe ellipticity (θ being the po-
sition angle), g the reduce shear and g∗ its complex conjugate.
Notice that this relation is only valid if |g| < 1.
As we have no information on the true shape e(s) we need to
make the assumption that galaxies are randomly oriented which
leads, in absence of the cluster, to < e(s) >e∼ 0. So if we con-
sider a region of the sky where the shear has small variations, we
get < e >e= g (Schramm & Kayser 1995). This may be wrong
in the presence of dark matter filaments or any kind of large
scale structures behind the cluster as it could introduce intrinsic
alignments of the background galaxies. For field galaxies we can
consider that they are drawn from a Gaussian distribution with
an intrinsic dispersion in orientation and ellipticity (Ebbels PhD
–> cf these ML). So we will add an estimated error σe1,2 ∼ 0.2
to the mean errors on (e1, e2) when doing the radial bining.
For spherical models of a galaxy cluster, the shear is a tangen-
tial quantity. So, defining the radial and tangential component of
the galaxies ellipticites (e⊥, e‖), we expect to have < e⊥ >= 0
and < e‖ >= g. Given the position of a galaxy (i.e. α, its an-
gle relative to the x-axis) and it’s orientation (θ, the angle be-
tween the x-axis and its major axis), the ellipticity components
are e‖ = e cos(2β) and e⊥ = e sin(2β) where β = θ − α. So we
juste have to average e‖ in rings around the cluster center and fit
the obtained shear profil (i.e. < e‖ > (r)) to parametric models.
The < e⊥ > (r) profil is used as quality check of the data (as it
should be equal to 0 everywhere) : we fit the shear profil only
in the radii range where we have (< e‖ >)i > (< e⊥ >)i. The
binning is done in rings with a constant width of 100” and we fit
< e‖ >i to g(r) with r = 0.5(ri + ri+1). Actually what we mesure
doing a mean in rings is :

∫ ri+1

ri
2πrg(r)dr

∫ ri+1

ri
2πrdr

(10)

But, doing a radial binning is not critical where we usually per-
form the model fitting, e.g. r > 100′′ (underestimation of a few
% with a SIS with σ = 1500 km.s−1 at z=0.6 for a bin width
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CONCLUSION/PERSPECTIVES

high z : 
contamination by foreground galaxies (= large fraction at these z)
low density of background galaxies
need other data (X, SL) to explore the clusters center
hard to estimate truthfull error bars

combine the data sets and optimize the mass/concentration estimation

explore mass properties, scaling laws
put constraints on evolution (comparison with REXCESS sample)

weak lensing analysis of 11 clusters

efficient to constrain the mass at large scales

+
+

-
-

weak lensing @ high z is challenging and requires very good data (space based)

-

-

Next steps :


