Quasar pairs as beacons to high redshift clusters

Eduardo Cypriano (Univ. de São Paulo) Laerte Sodré, Natália Boris, Claudia M. de Oliveira (USP) Michael West (ESO-Chile)

Motivation

Relevance of the detection of clusters at high redshifts:
▶ Cosmology: @, power spectrum amp, dark matter, etc.
▶ Cluster physics: evolution of the scale relations
▶ Environ. effects: galaxy formation and evolution

Most cluster detection methods (e.g. X-rays, optical/NIR, lensing) struggle at very high redshifts (z>1.5)

The use of quasar associations (pairs, triplets or +) can be a powerful tool to indicate the presence of clusters in those redshifts

Method: quasar associations

Quasars are rare objects whose activity seems to be triggered by galaxy interactions \rightarrow

A physically close pair (or triplet or +) of quasars is likely be related with a galaxy overdensity

<u>Concept proof</u>: Study of 4 fields with quasar pairs Boris et al. (2007)

Sample

Catalog: Véron-Cetty & Véron (2001)

Association criteria:

 $\Delta z < 0.01$

 $15" < \Delta \theta < 300"$

Redshift range: 0.9 < z < 1.0

Quasar Names	α (J2000)	δ (J2000)	z	$\Delta \theta$ (arcsec)	Quasar Pair Name
J131046+0006 ^a	13 10 46.2	00 06 33	0.925	177	OP 1310+0007
J131055+0008	13 10 55.9	00 08 14	0.933		
J135457-0034	13 54 57.2	-00 34 06	0.932	252	OP 1355-0032
J135504-0030 ^a	13 55 04.7	-00 30 20	0.934		
O0107-0235	01 10 13.2	-02 19 53	0.958	77	OP 0110-0219
PB 6291 ^a	01 10 16.3	$-02\ 18\ 51$	0.956		
J011441-3139 ^a	01 14 41.8	-31 39 25	0.974	144	OP 0114-3140
J011446-3141 ^a	01 14 46.4	-31 41 31	0.968		

Observations: imaging

GMOS North and South: g', r', i', z'

(exp: ~ 50, 20, 45, 55 min. respectively)

		t_{\exp} (s)					
PAIR	Telescope	g'	r'	i'	z'		
QP 1310+0007	Gemini N	9 imes 300.0	6×200.0	11 imes 350.0	8 imes 450.0		
QP 1355-0032	Gemini N	13×300.0	6×200.0	6×350.0	7 imes450.0		
QP 0110-0219	Gemini N	10×300.0	6×200.0	8×350.0	8 imes 410.0		
QP 0114-3140	Gemini S	7×300.5	6×200.5	7×350.5	7 imes 410.5		

Photometric redshifts

Method LRW: Locally Weighted Regression

Santos, Sodré et al. (in prep.)

 $z(\mathbf{x}) = a_0 + \mathbf{a}^T \cdot \mathbf{x} = a_0 + \sum_{i=1}^n a_i x_i$

$$\chi^2 = \sum_{j=1}^N \omega_j^2 \left(y_j - a_0 - \boldsymbol{a}^T \cdot \boldsymbol{x}_j \right)^2$$

$$\omega_j = \exp\left[\frac{-d^2(\boldsymbol{x}, \boldsymbol{x}_j)}{2K^2}\right]$$

HHDFN (Capak et al. 04) data were used optimize the parameters: 2/3 of the sample used for training and 1/3 for validation

Photometric redshifts

z'< 22

Photo-z distribution

Tests

$z \in [z_{\text{pair}} - \sigma_z, z_{\text{pair}} + \sigma_z]$								
Overdensity:		$\delta = \frac{n_{\rm pair} - n_{\rm H}}{n_{\rm H}}$			Density over the field (HHDFN)			
Clusterin	lg:	$CL = \frac{N(\Delta \theta > \Delta \theta_f)}{N_s}$			Average distance between members compared to random			
Richness	Richness:		$< i'_{3} +$	2)	The Abell criteria			
Pair	δ	$\Delta \theta_{\rm median}$ (arcmin)	CL _{median} (%)	<i>i</i> ′ ₃	$N(i' < i'_3 + 2)$	$N^{\rm esc}(i' < i'_3 + 2)$		
QP 1310+0007 QP 1355-0032 QP 0110-0219 QP 0114-3140	$\begin{array}{c} 0.58 \pm 0.14 \\ 1.59 \pm 0.19 \\ 0.70 \pm 0.14 \\ 0.86 \pm 0.23 \end{array}$	2.7 2.6 2.4 2.8	67.0 98.5 100.0 0.5	20.35 21.06 21.29 20.63	6 (R < 0) 95 (R = 2) 35 (R = 0) 34 (R = 0)	13 $(R < 0)$ 203 $(R = 4)$ 72 $(R = 1)$ 95 $(R = 2)$		

Tests

Presence of a red cluster sequence

Test results

SUMMARY OF THE QUASAR PAIR PROPERTIES							
Pair	δ	CL	N_A	RCM	C/F^a	X-Rays	
© QP 1310+0007	ok	ok	х	ok	ok		
⊙ QP 1355−0032	ok	ok	ok	x	х		
ⓒ QP 0110−0219	ok	ok	ok	ok	ok	ok	
⊗ QP 0114−3140	ok	х	ok	х	х		

^a Cluster-like or filament-like distribution.

QP 0100-0219: Spectroscopy

GMOS @ Gemini North:

- \succ R400+1.5"slits λ∈ [~5500Å, ~9700Å]
- > 2.4h on target (Nod & Shuffle technique)
- Targets selected by photo-z's
- > One mask (32 slits) → 27 redshifts

Cypriano et al. in prep.

Spec. versus phot. redshits

Redshift distribution

Color-magnitude diagram

Galaxy populations

Passive

Star forming

Discussion

Quasar pairs at high z actually seems to belong to galaxy clusters or groups (3 out of 4; one spec. confirmation): <u>Concept is viable</u>

Similar results were obtained for quasar triplets (Soching et al. 2008 & Alonso et al. 2008): Most triplets at low and high z reside at the periphery of rich clusters

Low mass systems such as CL 0110 would probably be missed by most other cluster detection methods:

Good for extending the baselines of scaling relations

The downside: no complete samples

Discussion

Probably the greater potential of this method is to detect clusters at redshifts greater than $1.5 \rightarrow$ Near infrared instruments at large telescopes are needed Quasar quartet at z~2 Ongoing observations with Hawk I @ VLT (P.I. Michael West)

+

Proposal for a pair at z \sim 4

2QZJ031321-3137

