

The PLANCK Cluster Catalog: SZ/X-ray Expected Properties

Antoine Chamballu James G. Bartlett Jean-Baptiste Melin in the framework of the Planck consortium

Imperial College

Background

- Successfully launched on May 14th 2009 from Kourou
- All-sky CMB survey made from L2
- Nominal mission: 14 months (2 skies)
- Survey started on August 13th

- Successfully launched on May 14th 2009 from Kourou
- All-sky CMB survey made from L2
- Nominal mission: 14 months (2 skies)
- Survey started on August 13th

First Light Survey press release

© ESA, LFI & HFI Consortia (Planck), Background image: Axel Mellinger

SZ observations

- 9 frequency bands giving a good spectral coverage of the SZ spectrum
- Volume & depth
 massive clusters up to z ~ 1
- Many clusters marginally resolved
 - selection function depends on cluster profile
 - photometry depends on source profile (precision on the size)

SZ observations

- 9 frequency bands giving a good spectral coverage of the SZ spectrum
- Volume & depth
 massive clusters up to z ~ 1
- Many clusters marginally resolved
 - selection function depends on cluster profile
 - photometry depends on source profile (precision on the size)

The Planck Cluster Catalog **Expected** properties

- Multi-Matched Filter (Melin et al. 2006)
- Planck Sky Model (PSM) 0 (Delabrouille et al.)
- WMAP-5 cosmology (Dunkley et 0 al. 2008)
- Universal pressure profile (Arnaud 0 et al. 2009)
- Self-similar scaling in mass and \circ redshift: $r < 5 \times r_{500}$
- Jenkins mass function
- Conversion from M₅₀₀ to M_{Jenkins}

GCEU 2009 - Pucón

Filter fluctuations on smallest scales

Planck simulations: PSM WG2 Challenge

The Planck Cluster Catalog Expected properties

The Planck Cluster Catalog Expected properties

SZ/X-ray Properties

- Scaling relations:
 - M₅₀₀-T relation (Arnaud et al. 2005, Vikhlinin et al. 2006) $M_{500} = 4.1 \times \left(\frac{T}{5 \text{ keV}}\right)^{1.5} h^{-1}(z) \quad [10^{14} M_{\odot}]$
 - L-M₅₀₀ relation(s) (Pratt et al. 2008)

 $L_X = 0.38 \times \left(\frac{M_{500}}{2 \times 10^{14} M_{\odot}}\right)^{1.53} h^{7/3}(z) \quad [10^{44} \,\mathrm{ergs/s}]$

- Mass function from Jenkins et al. 2001
- Mass conversion assuming NFW profile for dark matter with c = 4.3
- WMAP-5 cosmology (Dunkley et al. 2008), except for σ₈ which is determined from local counts (400sd)

Antoine Chamballu - Imperial College London

Model validation

- $\sigma_8 = 0.856 \pm 0.01$, from 400sd (Burenin et al. 2007) consistent within 2σ with WMAP-5
- Validation on:
 - local and high-z XLFs (Mullis et al. 2004) well reproduced
 - REFLEX (Böhringer et al. 2004) redshift distributions

Model validation

- $\sigma_8 = 0.856 \pm 0.01$, from 400sd (Burenin et al. 2007) consistent within 2σ with WMAP-5
- Validation on:
 - local and high-z XLFs (Mullis et al. 2004) well reproduced
 - REFLEX (Böhringer et al. 2004) redshift distributions

Model validation

- $\sigma_8 = 0.856 \pm 0.01$, from 400sd (Burenin et al. 2007) consistent within 2σ with WMAP-5
- Validation on:
 - local and high-z XLFs (Mullis et al. 2004) well reproduced
 - REFLEX (Böhringer et al. 2004) redshift distributions

SZ/X-ray Properties Comparison with existing surveys

- NORAS and REFLEX surveys (Böhringer et al. 2000, 2004):
 - $\sim 30\ 000\ deg^2$
 - ~ 900 clusters
- Planck:
 - ~ 3000 (1600) clusters
 - bigger volume
 - efficient at high redshifts (flatter distribution)
 - New massive high-z clusters

- Overlap between both catalogs:
 - 890 (570) clusters, i.e. 30% (34%) of the Planck catalog, with $f_x \geq 3.10^{-12} \ erg/s/cm^2$
 - determination of scaling laws (Ysz-Lx, Ysz-Yx, Ysz-Tx, Ysz-M...)
 - help in the determination of SZ fluxes when cluster size known from X-ray
- Clusters only in the RASS
 - some have high SZ fluxes, but are left undetected by Planck
 - determination of the Planck selection function via observations

Planck new clusters

Charactoristics	Prodicted number of clusters			
Characteristics		r redicted number of clusters		
	$\sigma_8 = 0.796$	$\sigma_8 = 0.856$		
All	1672	3005		
New clusters	1104	2112		
$z \ge 0.6$	95	278		
$0.8 \leqslant z < 1.0$	20	65		
$z \ge 1.0$	8	32		

Antoine Chamballu - Imperial College London

Targeted clusters

- Most massive (hottest) and distant clusters: more useful for cosmological studies
 - "hot" \equiv T \geq 6keV; "distant" \equiv z > 0.6
- Bright X-ray clusters
 - "bright" $\equiv f_{x (0.5-2 \text{ keV})} \ge 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$
 - T estimated with 10% error with exposure time ≤ 55ks
- MS1054-0321 (Gioia et al. 2001): z = 0.847±0.05; T = 7.2±0.7 keV; f_x [0.5-2]keV = 1.9±0.09×10⁻¹³ erg s⁻¹ cm⁻² ⇒ exposure time: ~25 ks

Targeted clusters

- Most massive (hottest) and distant clusters: more useful for cosmological studies
 - "hot" \equiv T \geq 6keV; "distant" \equiv z > 0.6
- Bright X-ray clusters
 - "bright" $\equiv f_{x (0.5-2 \text{ keV})} \ge 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$
 - T estimated with 10% error with exposure time ≤ 55ks
- ClJ1226.9+3332 (Maughan et al. 2007): z = 0.89±0.05; T = 10.4±0.6 keV; f_x [0.5-2]keV = 3×10⁻¹³ erg s⁻¹ cm⁻² M₅₀₀ = 5.2±1.0×10¹⁴M_☉
 ⇒ exposure time: ~70 ks

More numbers

Characteristics	Predicted number of clusters	
	$\sigma_8 = 0.796$	$\sigma_8 = 0.856$
$(z \ge 0.6)$	95	278
$T \ge 6 \text{ keV}; z \ge 0.6$	93	275
$T \ge 6 \text{ keV}; z \ge 1.0$	8	32
$T \ge 6 \text{ keV}; z \ge 0.6; f_x > 10^{-13} \text{ ergs/s/cm}^2$	92	271
$T \ge 6 \text{ keV}; z \ge 1.0; f_x > 10^{-13} \text{ ergs/s/cm}^2$	7	29

- Most of the new distant clusters are hot
- ... and bright in X-rays
- Significant increase compared to the number of known clusters

More numbers

Characteristics	Predicted number of clusters	
	$\sigma_8 = 0.796$	$\sigma_8 = 0.856$
$z \ge 0.6$	95	278
$T \ge 6 \text{ keV}; z \ge 0.6$	93	275
$T \ge 6 \text{ keV}; z \ge 1.0$	8	32
$T \ge 6 \text{ keV}; z \ge 0.6; f_x > 10^{-13} \text{ ergs/s/cm}^2$	92	271
$T \ge 6 \text{ keV}; z \ge 1.0; f_x > 10^{-13} \text{ ergs/s/cm}^2$	7	29

- Most of the new distant clusters are hot
- ... and bright in X-rays
- Significant increase compared to the number of known clusters

More numbers

Predicted number of clusters	
$\sigma_8 = 0.796$	$\sigma_8 = 0.856$
95	278
93	275
8	32
92	271
7	29
	Predicted num $\sigma_8 = 0.796$ 95 93 8 92 7

- Most of the new distant clusters are hot
- ... and bright in X-rays
- Significant increase compared to the number of known clusters

Significant increase

- Planck has started its first full-sky survey of the CMB
- Planck will observe all of the most massive clusters, and all of the distant Planck clusters will be massive.
- Almost all of them are going to be bright enough in X-rays to be observed (with 10% error on T) in 55ks or less with X-ray satellites
- All this motivates the X-ray follow-up of the most relevant/easily identifiable of those clusters, in the frame of a few-Ms Very Large Project with XMM.