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results from galaxies where the centers may not be as well-
defined.
Below follows a description of the methods used to deter-

mine the various center estimates. An application of these
methods is given for one typical “case-study” galaxy in Sec-
tion 5. Detailed and more technical descriptions are then
given for all galaxies in Appendix A.

3.1. Radio continuum
A nuclear point source in the radio continuum is usually as-

sociated with a central compact object, which naturally should
be at (or very close to) the bottom of the potential well of
the galaxy. For all galaxies which show such a source in the
THINGS radio continuum maps, its position was determined
by fitting a Gaussian to the central source. The uncertainties
for the center positions estimated in this way are all similar
(≤ 1′′) and we therefore do not show individual uncertainties
for center estimates deduced from the radio continuum.

3.2. Spitzer/IRAC 3.6µm image
We make use of the high-resolution 3.6µm images from

SINGS (Kennicutt et al. 2003)7. These allow an almost
dust-free view of the pre-dominantly old stellar populations,
though we note that the 3.6 µm band can also contain some
trace emission from hot dust, PAHs and AGB stars.
For those galaxies with a well-defined nuclear source in

the 3.6µm image, we derived the central position by fitting
a Gaussian to the central source. Because of the small and
homogenous and consistently small positional uncertainty of
less than 1′′, we do not list these here. For galaxies which
lack a clear nuclear source, we determined the central 3.6µm
position by fitting ellipses using the GIPSY8 task ELLFIT, tak-
ing care that the ellipse fits were not affected by small scale
structures.

3.3. Kinematic center
In addition to the photometric centers mentioned above, we

also derive kinematic centers using the GIPSY task ROTCUR.
This task fits a set of tilted rings of a given width to the ve-
locity field of a galaxy and determines their central positions,
rotation and systemic velocities, inclinations and position an-
gles. We use the best available center position (i.e., a central
continuum source, if present, otherwise a nuclear source in the
3.6µm image and as a last resort the center as derived using
ELLFIT) as an initial center estimate for ROTCUR and make
a fit with all parameters left free (including the center). By
averaging the central positions over a radial range unaffected
by spiral arms or other large-scale disturbances, we derive the
position of the kinematic center for each galaxy.
The determination of the positions of all centers are de-

scribed in Appendix A, and all center estimates are summa-
rized in Table 1.

4. HARMONIC DECOMPOSITION
We perform a harmonic decomposition of the velocity fields

by decomposing the velocities found along the tilted rings into
multiple terms of sine and cosine.
7 A small number of galaxies in our sample were not part of SINGS. For

these galaxies, the data were retrieved from the Spitzer archive.
8 GIPSY, the Groningen Image Processing SYstem (van der Hulst et al.

1992)

Following Schoenmakers (1999), we describe the line-of-
sight velocity, vlos, as:

vlos(r) = vsys(r)+
N

∑

m=1

cm(r) cos mψ + sm(r) sin mψ, (3)

whereN is the maximum fit order used, r is the radial distance
from the dynamical center, ψ is the azimuthal angle in the
plane of the disk, and vsys is the 0th harmonic component, c0.
Initial tests showed that a decomposition of the velocity fields
up to third order (i.e., N = 3) is sufficient to capture most of
the non-circular signal, as is described in Section 6.4.1.
The usual description of the apparent velocity, under the

assumption of purely circular motion can be retrieved by only
including m = 0 and m = 1 terms in Eq. 3, i.e.,

vlos(r) = vsys(r)+ c1(r) cos ψ + s1(r) sin ψ, (4)
and by ignoring streaming (radial) motions (i.e., s1 = 0). The
circular rotation velocity corresponds therefore to c1. Note
that the dependence on inclination is included in the cm and
sm terms. For the following discussion it is worthwhile to
repeat a few rules of thumb which apply to harmonic decom-
positions as given in Schoenmakers et al. (1997) and Schoen-
makers (1999):
(1) A perturbation of the gravitational potential of order m

will cause m+1 and m−1 harmonics in the velocity field. (So
an m = 2 two-armed spiral component will cause m = 1 and
m = 3 harmonics in the velocity field.)
(2) Perturbations in the gravitational potential are indepen-

dent and can therefore be added. The same holds for velocity
perturbations.
(3) The elongation of the potential εpot in the plane of the

disk of the galaxy can be calculated at each radius as follows:

εpot sin 2ϕ2 = (s3 − s1)
1+2q2+5q4

c1(1−q4)
, (5)

where q = cos i. The only remaining unknown quantity is ϕ2,
the unknown angle in the plane of the ring between the minor
axis of the elongated ring and the observer.
(4) Velocities induced by a global elongation of the poten-

tial will result in a constant offset in εpot sin 2ϕ2. Velocities
induced by spiral arms occur on much smaller scales, and
will therefore only lead to perturbations (“wiggles”) around
this offset.
(5) If the fitted inclination is close to the intrinsic inclination

of the disk, then c3 = 0. Small offsets of a few kms−1 result in
only small (1-2 degree) inclination offsets.
We use the GIPSY task RESWRI. This task performs a

tilted-ring fit assuming circular rotation, creates a model ve-
locity field, subtracts this from the original velocity field, and
does a harmonic expansion of the residuals. RESWRI does
not down-weight velocities along the minor axis as is usually
done in standard rotation curve analysis. For the width of the
annuli, we chose half the beam width; neighbouring rings are
thus not independent.
We calculate the quadratically added amplitude (“power”)

for each order of the harmonic decomposition using

A1(r) =
√

s21(r), (6)

form = 1 (note that c1 corresponds to the circular velocity and
is not included in the calculation of the amplitude of A1(r)),
and

Am(r) =
√

c2m(r)+ s2m(r), (7)


