

The Massive Hosts of Radio Galaxies Across Cosmic Time

Nick Seymour (*Spitzer* Science Center/JPL) "Obscured AGN Across Cosmic Time" Seeon, June 7th 2007

Co-conspirators:

Daniel Stern (JPL), Carlos De Breuck, Joel Vernet, Michelle Doherty, Robert Fosbury (ESO), Audrey Galametz (ESO/JPL), Alessandro Rettura, Andrew Zirm (STSCI), Brigitte Rocca-Volmerange (IAP), Mark Lacy, Harry Teplitz (SSC), Arjun Dey, Mark Dickinson (NOAO), Wil van Breugel, Adam Stanford (UC/LLNL), George Miley, Huub Rottgering (Leiden), Peter Eisenhardt (JPL), Patrick McCarthy (OCIW), Taddy Kodama (NOAJ), Dave Alexander (Durham), Thomas Greve

Structure of Talk

- Introduction to the SHzRG project.
- Results from the Spitzer Data on the host galaxy
- Results using Spitzer and other data looking at the relationship between the host galaxy and AGN activity

Unification of Active Galactic Nuclei (AGN) by Orientation

	Un-obscured AGN (broad-lined)	Obscured AGN (narrow-lined)
Low luminosity	Type 1 Seyfert Galaxies	Type 2 Seyfert Galaxies
High luminosity	QSOs (Quasi- Stellar Objects)	Type 2 QSOs

ESA/NASA, the AVO project and Paolo Padovani

All these can be radio-loud or radio-quiet (i.e. have a radio jet or not)

Why are radio galaxies interesting?

Archetypical (radio-loud) type II AGN!

- Locally hosted by gE and cD galaxies (Matthews *et al.*1964; Zirm, Dickinson & Dey 2003)
- Reside in moderately rich (proto) cluster environments (Stern *et al.* 2003)
- Sometimes surrounded by
 Ly -alpha haloes (Reuland et al. 2003)
- Often luminous at sub-mm wavelengths (Archibald *et al.* 2001)

K-z or Hubble diagram for radio galaxies

Apparent *K* magnitude

Redshift

Rocca-Volmerange et al. 2004

A Comprehensive *Spitzer* Survey of HzRGs: The Most Massive Galaxies at Every Epoch

- 28.3 hr of Spitzer Cycle 1 GO observations
- 70 HzRGs at 1<z<5.2
- 2 camera imaging, to measure the SEDs of stellar populations and the dust properties
- Data taken from Nov. 2004 to Nov. 2006
- Now 20 more hours of data from a GTO Cycle 4 proposal (to complete 16 and 24μm imaging)!
- And bonus IRS spectrum of 4C23.45 (to be observed in two weeks)

Welcome to the **SHzRGS** status page

1) Sources order in increasin
2) Name is a link to NED (2amin se
3) HST: W=WFPC2, WI=WFPC2IMPOL, A=ACS, N=NICM
(*)=some data with PI outside collaboration
4) X (X-ray): C=Chandra data has been to
5) a magnitude with a link leads to
6) Scuba data added: A01 = Archibald 2002,
7) logL = log restframe luminosity at
8) ROC + date = publicly releated
9) RED - reduced and link to fin
10) notes have details of photo
11) POL: *=proposed to be observed, ^=got data

	T	Т	T	T	ī	T		T	T	
								IRAC		
								IRS		
								MIPS	S	
			Î	II	Î	I	Î	AĻL	3,	
0	10	20	30	40	50	60	70	80	90	100

Name	RA	dec	z	X Optical	HST	Spectra	I	Data Scheduled 68.10 %					
6C 0032+412	08.7212076 00:34:53.09	41.52541730 +41:31:31.50	3.670	- z'		-							
MRC 0037-258	09.985036 00:39:56.41	-25.575281 -25:34:31.01	1.100	- R	-		Im		RED		-		27.09 <u>D</u> <u>N</u>
6C*0058+495	15.328557 01:01:18.85	49.8367480 +49:50:12.29	1.173	Р -	-			K	RED		RED		26.68 <u>D</u> <u>N</u>
MRC 0114-211	19.2143510 01:16:51.44	-20.8685314 -20:52:6.71	1.410		W*		-	K	RED		-	- 300	28.32 D N
TN J0121+1320	20.4280417 01:21:42.73	13.3494444 +13:20:58.00	3.516	- <u>R</u>	-		Sp	J <u>K</u>	RED	RED	2 -	SCUBA	. 27.17 <u>D</u> <u>N</u>
6C*0132+330	23.876644 01:35:30.39	33.283560 +33:17:0.82	1.710	- z'	-	4	2	K	RED				26.57 D N
6C 01/0+326	25 0325820	32 80702000	4.412	F 224	W/*\ N			v	POC Den	DED	POC	SCLIDA	27.26 D N

Luminosity-redshift distribution

- HzRGs in our Spitzer sample with IRAC/IRS imaging

Squares - MIPS observations as well, i.e. low galactic background

Plusses - parent sample of 225 HzRGs from which our sample of 70 was drawn

The IRAC colours

Stern et al. 2005

Lacy et al. 2004

Stellar *H*-band Luminosities: Modeling the rest-frame near-IR SEDs

- Using only IRAC bands + 16μm + 24μm
- Fit elliptical templates of varying age from PEGASE 2 (assuming $z_{\text{form}}=10$).
- Use 3 black-body components of dust at different temperatures: 60K and 250K, both fixed, and 600-1500K hot AGN heated dust
- Use formal χ^2 fitting for results

HzRGs without 24µm observations or detections

Stellar masses of HzRGs

Stellar Mass Log(M)

Sub-mm galaxies

Redshift

Stellar masses of HzRGs (photometric)

Dynamical masses

Stellar Mass Log(M)

Redshift

To appear in ApJS (astroph/0703224)

Radio/mid-IR Luminosity Ratio

Ogle et al. 2006

Stellar Mass/Radio Luminosity Correlation

Comparison with Other Data

- Chandra and XMM-Newton
- High resolution, high frequency radio observations
- Sub-mm observations, mainly with SCUBA

Black-hole mass v stellar mass

D. Alexander et al. in prep.

Other AGN measures

Projected extent of lobes (kpc)

5μm luminosity

IR to Sub-mm SED Using MIPS, SCUBA and CSO data

Siebenmorgen AGN SEDs

- visual extinction
- outer radius of dust clouds
- total luminosity

IR to Sub-mm SED Using MIPS, SCUBA and CSO data

 R_{dust} =8000pc, L_{bol} =10^{14.5} L_{\odot} , A_{v} =128

 R_{dust} =4000pc, L_{bol} =10^{14.25} L_{\odot} , A_{v} =128

Siebenmorgen AGN SEDs

- visual extinction
- outer radius of dust clouds
- total luminosity

Conclusions: the Spitzer HzRG sample

- At high-z IRAC colours find type 2 as well as type 1 AGN.
- Radio Galaxies are hosted by massive (10¹¹⁻¹² M_☉) galaxies across 1<z<5.2.
- Most high-z radio galaxies have strong mid-IR luminosities similar to QSOs implying high accretion rates.
- very weak trend of decreasing stellar mass with decreasing radio luminosity.
- HzRGs have a close to M_{BH}-σ relationship.
- HzRGs may have very high star formation rates and hence low specific star formation rates.

Future work: the Spitzer HzRG sample

- 4 publications already
- How do the AGN properties (IR luminosity, radio lobes) relate to the properties of the host galaxy, e.g. SFR and specific SFR?
- Herschel/Alma observations are desired.
- Environments of HzRGs: Zirm et al. (tomorrow), Galametz et al. (yesterday), Kodama, Kurk et al. (yesterday)
- Happy to share our data with anyone interested!
- webpage: spider.ipac.caltech.edu/staff/seymour/SHzRGs.html
- The Massive Hosts of Radio Galaxies Across Cosmic Time"
 Seymour et al. 2007 ApJS August volume (astroph/0703224)

Future work: the Spitzer HzRG sample

- 4 publications already, 5 babies
- How do the AGN properties (IR luminosity, radio lobes) relate to the properties of the host galaxy, e.g. SFR and specific SFR?
- Herschel, APEX, SCUB2 and ALMA observations are

needed.

- Environments of HzRGs: Zirm et al. (tomorrow), Galametz et al. (yesterday), Kodama, Kurk et al. (yesterday)
- Happy to share our data with anyone interested!
- webpage: spider.ipac.caltech.edu/staff/seymour/SHzRGs.html
- The Massive Hosts of Radio Galaxies Across Cosmic Time"
 Seymour et al. 2007 ApJS August volume (astroph/0703224)

Conclusions: the Spitzer HzRG sample

3c65	6c0140+326	MRC 0037-258	TN J0924-2201
3c239	6c0930+389	MRC 0114-211	TN J1338-1942
3c257	6c1232+389	MRC 0152-209	TN J2007-1316
3c266	6ce0820+3642	MRC 0156-252	
3c294	6ce0905+3955	MRC 0211-256	TX J1908+7220
3c356		MRC 0251-273	
3c368	7c1751+6809	MRC 0316-257	USS 0828+193
3c470	7c1756+6520	MRC 0324-228	USS 0943-242
	7c1805+6332	MRC 0350-279	USS 1243+036
4c23.56		MRC 0406-244	USS 1410-001
4c24.48	8c1435+635	MRC 1017-220	USS 1558-003
4c28.58		MRC 2025-218	USS 1707+105
4c40.36	B2 0902+34	MRC 2048-272	USS 2202+128
4c41.17	B3 J2330+3927	MRC 2104-242	
4c60.07		MRC 2224-273	WN J0617+5012
	LBDS 53W002		WN J0747+3654
5 c7.269	LBDS 53W069	PKS 0529-549	WN J1115+5016
	LBDS 53W091	PKS 1138-262	WN J1123+3141
6c0032+412			WN J1911+6342
6c0058+495	MG 1019+0534	TN J0121-1320	
6c0132+330	MG 2144+1928	TN J0205+2242	

http://spider.ipac.caltech.edu/staff/seymour/SHzRGs.html