Gamma-ray absorption in quasars: a theoretical perspective

Anita Reimer, HEPL & KIPAC, Stanford University "Obscured AGN across cosmic time", Seeon, 5-8 June 2007

y-ray instrument capabilities

significant improvements in:

energy range & resolution sensitivity, field-of-view, etc.

γ-ray instrument capabilities

γ -ray absorption in (baryonic) matter

[Iyudin, Reimer, Burwitz et al. 2005, A&A]

- nuclear resonant absorption of γ -ray beams by atomic nuclei: (independent of ionization and chemical state!)
 - · pygmy dipol resonance @ ~7MeV
 - · giant dipol resonance @ ~20-30MeV

→ probes baryonic absorption columns along sight line of N_H≥10²⁶cm⁻²

[X-rays: $N_{\mu} \le 10^{25} \text{cm}^{-2}$, UV/opt: $N_{\mu} \sim 10^{21} \text{cm}^{-2}$]

Any solid measurements of absorption troughs in high-resolution γ -ray spectra indicates existence of $N_H \ge 10^{26} cm^{-2}$ baryonic absorbing columns.

y-ray absorption in radiation fields: 10 10 10 -3 1,2 - Inverse Compton 3.4 - Pair production 1.3 - Monoenergetic photon gas 2.4 - Planckian photon gas 10^{-2} 10^{-1} 1 10 10^{2} 10^{3} 10^{4} 10^{5} $\kappa_0 = \epsilon_0 \omega_0$ From: Aharonian (2004)

- prominent peak of σ_{vv} close to threshold
- · more than half the interactions occur in narrow target photon interval: $\Delta \epsilon \approx (4/3\pm2/3)$ ε*, ε**0.8eV(E'/TeV)-1
- · Oma

BLR radiation field (geom. thick shell)

- spherical shell of clouds (R=0.01... 0.4pc, $l_0 = 0.01pc i.n.n.o.$)
- L_{BLR}=τ_{BLR}L_{disk}, τ_{BLR}≈0.01 (Celotti etal.'97)
- average BLR spectrum (Francis etal '91)

approx. as 2-line (Hally spectrum PL & KIPAC. Stanford University

... constrain location of γ -ray emission ("reverberating soft photons")

Target photon field: accretion disk photon "flare" Δt_s (Shakura-Sunyaev, L_{disk} =2.5 10^{46} erg/s, M=5.3M_e/yr, M_{BH} = $10^9 M_e$, z=1)

The temporal behaviour of the γ -ray opacity cutoff in conjunction with the accretion flare time history can constrain the location of the γ -ray emission site l_0 .

... constrain the EBL & its evolution

- fill in FS- or S_{10GeV}/S_{1GeV} redshift diagram with a large number of sources (large statistics of bright, hard sources is key!)
- systematic increase of opacity with redshift unique signature of absorption in EBL

... constrain the EBL & its evolution

- fill in FS- or S_{10GeV}/S_{1GeV} redshift diagram with a large number of sources (large statistics of bright, hard sources is key!)
- · systematic increase of opacity with redshift unique signature of absorption in EBL

BUT:

Is AGN-intrinsic/local absorption redshift-dependent, too?

FS-relation for EBL-caused

absorption.

Parameters for non-evolving (NE) accretion rate curves: $M_{BH} = 10^9 M_o, L_{disk} = 0.5 L_{edd} = 6$ $10^{46} \text{erg/s}, M_{BH} = 10^8 M_o$

& KIPAC. Stanford University

BUT:

Is AGN-intrinsic/local absorption redshift-dependent, too?

& KIPAC. Stanford University

Conclusion

Gamma-ray absorption in the GLAST-era can probe:

- Intervening baryonic matter with $N_H > 10^{26} \text{cm}^{-2}$ through resonance absorption
 - obs. diagnostic: absorption troughs at MeVs-GeVs
- \rightarrow Location of γ -ray emitting region in jet sources
 - obs. diagnostic: 'reveberating' soft (accr.disk/BLR) photons
- Extragalactic background light (EBL), & possibly its evolution

BUT: Only "naked" jet sources (i.e. AGN without noticable opt/UV external radiation fields close to the γ -ray emission region) are suitable for studies of the evolution of the EBL on the basis of a Fazio-Stecker relation (or similar approaches) using GLAST's LAT.

Anita Reimer, HEPL & KIPAC, Stanford University