AGN Identification in X-ray Surveys

First X-ray Survey

Discovered X-ray background (CXB), first cosmic background discovered

Giacconi et al. (1962)

FIG. 1. Number of counts versus azimuth

For a long time it was uncertain what dominated the CXB

AGNs are strong X-ray emitters

Rapid X-ray variabilty of nearby AGNs show the central regions are being probed: a measure of the on-going accretion

It is now confirmed that AGNs dominate the CXB

Power House and Ubiquity of AGN activity

Accreting black-hole: power-house of an AGN

PRC97-12 • ST Scl OPO • May 12, 1997 • B. Woodgate (GSFC), G. Bower (NOAO) and NASA

All massive galaxies appear to host a massive black hole => all galaxies have undergone luminous AGN activity in the past

X-rays: Probing Heavy Absorption

X-rays can probe heavily obscured objects, particularly at hard energies (>2 keV)

X-ray Observations of Nearby AGN

X-ray Observations of Nearby AGN

Majority of AGNs are obscured and perhaps half are Compton thick, where a large fraction of the emission is probably not direct (from scattering and reflection components; e.g., NGC1068)

Most Sensitive Current Facilities

Most sensitive X-ray observatories (launched 1999) provide 1-2 orders of magnitude improvement at hard X-rays over previous observatories and with better spatial resolution

Blank-Field X-ray surveys

Broad exploration of available parameter space

Wide and Deep: complementary parameter space

CDFN: $L_{\rm X}\sim3\times10^{40}$ erg/s at z ~0.5 ; $L_{\rm X}\sim10^{42}$ erg/s at z ~2 (almost 100x deeper than Bootes but 100x larger)

LogN-LogS and X-ray Background

Optical Properties

X-ray Source Diversity

X-ray Source Diversity

As generally found in previous X-ray surveys (e.g., Stocke et al. 1991) but 4 orders of magnitude fainter!

AGN Optical Spectral Diversity

AGN Optical Spectral Diversity

 $0.5-8.0 \text{ keV flux (erg cm}^{-2} \text{ s}^{-1})$

Troublesome Sources: "Elusive" AGN

No clear optical evidence for AGN activity - challenging to identify as an AGN without X-ray observations

Lower luminosity AGNs tend to be "elusive": host-galaxy dilution (Caccianiga et al. 07)?

Rigby et al. (2006) also find galaxy inclination (host galaxy obscuration)

Troublesome Sources: Optically Faint AGN

Mainieri et al. (2005)

I>23-24 objects: challenging to identify with spectroscopy but photometric redshifts and multiwavelength properties suggest majority are z>1 moderate-luminosity AGN (e.g., Alexander et al. 2001; Mainieri et al. 2005)

Redshift Distribution of AGNs in 1Ms CDF-S

Spectroscopic+ photometric redshifts

z<1 peak with high-z
tail: possibility of
some z>5 AGNs (Xray sources without
optical c/parts;
EXOs) but unlikely to
big large number. See
Koekemoer talk

AGNs and Large-Scale Structure

AGN fraction in galaxies often enhanced in spikes (Silverman et al. submitted; see also Gilli et al. 2003): need to explore AGNs in across a range of environments

AGNs and Large-Scale Structure

AGN fraction in galaxies often enhanced in spikes (Silverman et al. submitted; see also Gilli et al. 2003): need to explore AGNs in across a range of environments

Cosmic Evolution of AGN activity

Source downsizing is also seen in galaxy populations and originally in AGNs from radio

Strong evolution at z<1
(factor ~10) seems to be
mirrored in the luminous
IR galaxy population
(e.g., Elbaz et al. 2002)

Cosmic Evolution of AGN activity

Source downsizing is also seen in galaxy populations and originally in AGNs from radio

Strong evolution at z<1
(factor ~10) seems to be
mirrored in the luminous
IR galaxy population
(e.g., Elbaz et al. 2002)

Moderate-luminosity AGN activity (i.e., Seyfert galaxies) peaks at lower redshifts than high-luminosity AGN activity (i.e., QSOs); see, e.g., Cowie et al. (2003); Fiore et al. (2003); Hasinger et al. (2004); Barger et al. (2005); La Franca et al. (2005)

Investigation of z<1 "AGN downsizing"

Lower luminosity sources appear to have lower Eddington ratios rather than having lower mass black holes (at least at z<1) Calculate black-hole mass from K-band luminosity and stellar mass; average black-hole mass ~10⁸ solar masses

X-ray Spectra: Tracing X-ray Absorption

Bauer et al, in prep

Variety of X-ray spectral types but majority of the X-ray detected AGN are absorbed

Going Deeper: Composite Faint Source Spectra

12Ms Composite Chandra spectra

Can extend X-ray spectroscopy to fainter sources using X-ray stacking, if have spectroscopic redshifts

But many AGNs undetected in deepest X-ray surveys

Many of these X-ray undetected sources likely to be luminous Compton-thick AGN

Searching for the X-ray unidentified AGNs

Stacking bright X-ray undetected Spitzer sources (f24>80uJy) we get a very hard signal (even in 6-8 keV)

Steffen et al. submitted

Mid-IR power-law sources and objects with a "radio excess" also find some X-ray undetected AGNs (Donley et al. 2005;

BUDTISWHEREETS ETHEL L2000E)

PREDICTED C-THICK
POPULATION?

X-ray undetected mid-IR AGN in z~2 galaxies

Identified a population of z~2 X-ray undetected galaxies with mid-IR excess over that expected from SF: do they host obscured AGNs? Daddi, Alexander et al. submitted

Stacked X-ray data of mid-IR excess in narrow bands

Very hard signal => obscured AGN activity (see also Fiore et al. submitted)

Properties suggest C-thick (or near C-thick) AGNs

Large C-thick (or near C-thick) $z\sim2$ AGN population (up to ~3000 deg⁻²)! Potentially as much black-hole growth as $z\sim2$ QSO population!

Power of MIR spectroscopy: ID'ing individual C-thick AGN at z~2

X-ray weak/undetected sources with strong IR power-law emission: luminous C-thick AGN (quasar luminosity)

Pope et al. in prep

And also identifying potential C-thick AGN at z~0.5-1

X-ray
unidentified AGN
in 2Ms CDF-N
with clear AGN
signatures in
optical

Coming soon: Spitzer-IRS spectroscopy for sample of z~0.5-1 candidate C-thick AGN to confirm if actually C-thick

Summary

Summary

- X-rays: efficient AGN identification and almost absorptionindependent probe of mass accretion
- · X-ray surveys ID largest AGN source density (~7200 deg⁻²):
 - ⇒ Optical properties of sources are diverse, including objects without optical AGN signatures and faint, high-z obscured AGN
 - ⇒ X-ray sources in deep fields predominantly at z~0.5-1 with high-z tail
 - ⇒ AGN activity appears to be enhanced in redshift "spikes"
- Evolution of X-ray AGNs consistent with "downsizing": most luminous objects dominant at high-z, lower luminosity dominant at low-z:
 - ⇒ First investigation suggests "downsizing" is due to decrease in Eddington ratio rather than black-hole mass
- · Majority of AGNs are X-ray absorbed but clear evidence that many luminous AGNs remain undetected even in deepest X-ray survey:
 - \Rightarrow Large (up to ~3000 deg⁻²) candidate C-thick AGN population found at z~2 from X-ray stacking analyses: potentially as much

black-hole growth as z~2 QSOs