Panel B/Chapter 3 How do galaxies form and evolve?

- Science Questions
- Recommendations
- Input from the Community

Science Questions

- How did the Universe emerge from its dark ages?
- How did the structure of the cosmic web evolve?
- Where are most of the metals throughout cosmic time?
- How were galaxies assembled?
- How did the Milky Way form?

J. Bergeron, R. Kennicutt, X. Barcons, F. Bertoldi, A. Ferrara, M. Franx, A. Helmi, G. Kauffmann, I. Smail, M. Steinmetz

Panel B ASTRONET

Dark ages

- Onset of re-ionization
 - $-t(z\sim11?)=0.41 \text{ Gyr}$
- Galaxy of highest z

$$-t(z=7)=0.75 \text{ Gyr}$$

- End of re-ionization
 - $-t(z\sim6)=0.91 \text{ Gyr}$

$$\Omega_{\Lambda}, \Omega_{\rm m}, h = 0.7, 0.3, 70$$

How did the Universe emerge from its dark ages?

- Growth of matter density fluctuations: HI mapping
 - Probing the Dark Ages $z\gg z_{
 m reion}$ $T_s=T_k < T_{
 m CMB}$
 - ightarrow absorption signature at u < 30 MHz $(z \sim 50)$
 - → erased/modified by annihilating/decaying DM radiation

• First stars

- transition from top-heavy IMF to a 'Salpeter' IMF?
 - \rightarrow critical metallicity : Z $\sim 10^{-4} \, {\rm Z}_{\odot}$?
- connection to metal-poor halo stars
- GRBs and pair-instability pop III SNe : detection of transient sources
- formation of intermediate mass BHs
- early metal pollution of the IGM : observation of bright background targets
- improving current models: environment, self-propagation, rotation, convection ...

• Cosmic re-ionization

- Onset of re-ionization ? CMB polarisation
- dominant sources for re-ionization : stars, AGNs, decaying supersymmetric particules?
- How long did it take?
- patchy re-ionization (arcmin scales): maps of H I 21 cm brigthness fluctuations
 CMB secondary anisotropies
- first seed of galaxies
- simulations : large volume
 feedback processes (radiative, chemical, mechanical, magnetic)

predictions (nb cts, LF, SN & GRB burst rates)

• First Black-holes and their evolution

- $z\sim 6$ QSOs (very rare objects) : $M_{
 m BH}\gtrsim 10^6 M_\odot$ at $z\sim 10^6 M_\odot$
- BH growth: accretion, merging, tidal capture of stars
- strong X-ray emitters, production of gravitational waves
- close environment : metal-rich and dusty?

H_I 21 cm brightness fluctuations

- Maps of 21 cm brightness temperature (5×5 arcmin²) at z=12.1, 9.2 and 7.6 (left to right) with a width $10h^{-1}$ comoving Mpc and depth $\Delta\nu=0.1$ MHz assuming a late, single epoch of reionization and $T_S\gg T_{CMB}$ HII regions have negative brightness temperatures relative to $\langle \text{H\,I} \text{ signal} \rangle$
 - → information on the the sources responsible for reionization

How did the structure of the cosmic web evolve?

- Clusters and groups of galaxies
 - cluster DM mass function?
 → cosmic shear very deep large area surveys
 - ICM/dominant baryonic component : X-ray emission all sky survey
 - ightarrow metallicity at high z? at $z\lesssim 1$: Z $\sim 1/3$ Z $_{\odot}$
 - → kinematics
 - galaxy populations: deep, large area (all sky) optical, near-IR multi-colour surveys
 - magnetic field : diffuse synchroton emission radio spectropolarimetry (Faraday rotation of radio sources)
 - rare high z massive clusters : spectral distortion of CMB by hot electrons (SZ effect) coupled to optical/near-IR & X-ray surveys
 - \rightarrow constraints on $\Omega_{\rm m}$, Ω_{Λ} & DE equation of state vs cosmic time
 - simulations vs observations

Millennium simulations

Largest simulations (10^{10} DM particules) carried out to date, used to construct complex semi-analytical models of galaxy and structure formation.

Image of a galaxy cluster at z=5.7 (left) and z=0 (right)

• Cluster progenitors

- environment of high z, rare luminous objects : QSOs radio and starburst galaxies
- detection of hot ICM gas : SZ effect diffuse X-ray emission
- high z galaxy overdensities

• Lower density environments

- topology of the DM density field & kinematics of the IGM
 - ightarrow 3D mapping of Ly-lpha absorbers at $z\sim 3$
- magnetised IGM : Faraday RMs of large samples of distant sources
 - → seed field for galaxies and clusters?
- intergalactic shocks : low $oldsymbol{
 u}$ synchrotron emission (large angular-scale fluctuations)
 - \rightarrow could trace the low z warm-hot IGM

Where are the metals throughout cosmic time?

- Metal enrichment on large scales
 - stellar winds and SN explosions
 - enrichment of the IGM : powerful galactic outflows?
- Re-ionization epoch
 - highly inhomogeneous pollution of the IGM by heavy elements
 - at the end of re-ionization : $\langle \mathsf{Z} \rangle \sim 10^{-4} \; \mathsf{Z}_{\odot}$
 - IGM mostly in the form of neutral & singly ionized species
 - H $\scriptstyle II$ bubbles (around stars & IMBHs) mainly traced by C $\scriptstyle IV$
 - Inventory of metals and abundances : $H_{\rm I}$ (21 cm) + metal (near-IR) absorptions
 - → search for extremely rare, luminous background targets including transient sources
 - → evolution of L and M of the re-ionization sources

Simulated 21 cm absorption spectrum

• intervening H_I absorption

```
Highly luminous z{=}10 source flux : S(120 MHz)=20 mJy spectral resolution : \Delta \nu = 1 kHz
```

very few sources

```
expected at z>8 & S>10 mJy: 10^{-2}~{\rm deg^{-2}}~({\rm M_{BH}}>10^7~{\rm M_{\odot}}) GRB radio afterglows: too faint possibly hypernovae: flux up to 1 mJy?
```


- $z \sim 3$: peak activity of galaxy and QSO formation
 - over 95% of the baryons are in the IGM
 - only \sim 50% of the produced metals are detected
 - missing metals : around SF sites or in the IGM (numerical simulations)
 → strength of galactic superwinds?
 - ightarrow absorber-galaxy connection : 3D mapping (optical) of Ly-lpha & metal-rich absorbers
 - → metallicity level in IGM underdense regions
 - → census of metals in various types of galaxies

• The local universe

- $-\sim$ 90% of the baryons are still in the IGM only half of them are detected
- simulations: missing baryons should be in a warm-hot phase of IGM (WHIM)
- not enough baryons detected in the warm-phase $~(10^5{<}T{<}10^6~{
 m K})$
 - → X-ray searches of the WHIM signatures (absorption/emission)
 - $\rightarrow \sim 20\%$ of the metals could be in the WHIM

How were galaxies assembled?

- Simulations remaining challenges : include all major 'gastrophysical' processes and feedback mechanisms
- Gas cooling, accretion and star formation
 - amount of cold gas content in galaxies at z>0.1
 - → H I masses and cold gas accretion
 - SFR vs N(HI): validity of Kennicutt-Schmidt law at high z?
 - → molecular census observations in the sub-mm to cm range
 - importance of feedback processes : kinematics of $H\ {\ {\ {\ {\rm I}}}}/molecular/ionized$ gas
 - SFRs : multi- λ diagnostics
 - → dust extinction mid- and far-IR observations
 - → radio continuum
 - thermal : $L_{
 m UV}$ synchrotron : $L_{
 m synchrotron}$ vs $L_{
 m far-IR}$
 - magnetic field structure
 - → Faraday RMs magnetic field amplification

- High z galaxies: internal physics and dynamical evolution
 - are they in equilibrium state? importance of merging?
 - → kinematics : stellar masses (total, bulge), signature of galactic winds-feedbacks
 - spatial distribution of stars, metals and dust
 - → IFU spectroscopy at high spatial resolution
- Star formation & metal enrichment vs galaxy assembly
 - colour-magnitude diagrams
 - → goal : reaching the Virgo cluster ('normal Ellipticals') depth and highest spatial resolution
 - kinematics and chemical abundances
 - \rightarrow assembly of the Hubble sequence
- Key physical processes
 - disantangle evolutionary effects due to age, mass, morphology, environment
 - \rightarrow spectroscopy of very large samples $(10^4 \text{-} 10^5)$ of galaxies up to $z \sim 2\text{-}3$

Massive, young galaxy at z = 2.2

• The Spider galaxy and its many satelitte galaxies

$$-t(z=2.2)=2.9 \text{ Gyr}$$

How did our galaxy form?

- Assembly and chemical history: stellar census of our Galaxy
 - are there zero-metallicity stars?
 - what is the typical mass of the 'first' stars?
 - when did the transition to the present-day IMF take place?
 - ightarrow stellar LF, IMF survey of positions, distances and motions of several 10^9 stars
- Nature and distribution of DM
 - total mass and density profile of our Galaxy
 - mass and shape of the DM halo: tidal streams
 - Galactic satellites: total mass and DM density profile
 - → radial velocities and chemical abundances of faint stars multi-object spectroscopic surveys next generation dynamical models

Synthetic Colour-Magnitude Diagram

- constant SFR
- metallicity $\mathbf{Z}/\mathbf{Z}_{\odot}$ linear \nearrow from 0.0001 to 0.02 in Δt bin in Gyr

General

- Large collecting-area facilities (space- and ground-based)
 - major contribution to most science questions
 - λ range from low-u radio to gamma-ray
- Key role of theoretical work
 - enhanced numerical simulations of structure and galaxy formation
 large cosmic volumes, detailed physical processes & feedback mechanisms
 - models of first star and IMBH formation
 - dynamical model of our Galaxy

Requirements for principal facilities/1

• There is no priority order in the list given below

- An ELT with adaptive optics
 - high-resolution imagers and spectrometers $(R\sim 5 imes 10^4)$
 - highly multiplexed near-IR spectrographs
 evolution of the large-scale structures over cosmic time
 internal physics of high z galaxies
 stellar populations in the local supercluster
 complement to revolutionary information that will come from JWST and Gaia

Requirements for principal facilities/2

- An extremely large collecting area telescope in the cm radio domain
 - wide dynamical and spectral ranges, such as the proposed SKA
 cosmic reionization
 formation of galaxies, stars & black holes
 formation and amplification of magnetic fields
 build on submm-cm work opened up by ALMA and LOFAR (coming decade)
- A large-aperture X-ray space mission
 - moderate-resolution spectroscopic capability $(R \sim 1000)$ galaxy-IGM connection at high z missing baryons at low z BH evolution galaxy assembly

Requirements for principal facilities/3

• A cooled 4-8 m class infrared space telescope

```
dust-obscured galaxy formation
star formation
BH formation and growth back to the reionization epoch
```

- A 4-8 m class UV-optimized space telescope
 - high-resolution imaging and spectroscopy
 evolution of intergalactic baryons
 exchange of matter & metals between galaxies & the IGM over cosmic time

Requirements for secondary facilities

- A wide-field optical/infrared telescope constrain DM and DE
- A next-generation gamma-ray mission such as the Advanced Compton Telescope (ACT) space mission concept
- A space-based gravitational wave mission such as the Laser Interferometer Space Antenna (LISA)
- Longer term: A far-infrared space interferometer dust-obscured and shock-heated regions groundbreaking observations of H₂ molecules at high z ideal complement to ALMA

Input from the community

- R. Beck (oral presentation during the discussion sessions)
 - importance of magnetic fields
 added in panel B presentation (and the Science Vision report)
 Milky Way section still to be updated
 - Effelsberg 100m will be added together with the GBT (cosmic web sub-section)

• T. Krichbaum

- highest angular resolution (BLBI technique) for compact HII regions, pulsars, BHs and SNe $\,$

combining cm-VLBI with SKA, mm-VLBI with ALMA will be added in the report

• D. Baade

spectropolarimetry

will be added in the report, in particular for obscured AGNs and SNe