The evolution of groups & of galaxies therein

1) Evolution of groups

1a) How can we tell if a group is collapsing or virialized?1b) How frequently do compact groups from?

2) Evolution of galaxies in groups

2a) How frequently do galaxies merge?2b) Do we understand the morphology density relation?2c) How far out should we see the effects of the group environment?

3) Internal kinematics of groups

3a) Which is the best estimator of the virial radius of a group?3b) Can we constrain the mass profiles & orbits?3c) What are the nature of the different classes of groups?

States of groups

 $10^{13} M_{sun}$ halos in cosmological simulations

friends-of-friends groups

stringy, z-space selection: contaminated by filaments Moore, Frenk & White 93; Diaferio et al. 99

States of compact groups

isolated virialized overdensities $\delta \rho / \rho \sim 10^5$

cores of virialized groups

chance alignments of galaxies within: loose groups Rose 77; Mamon 86 clusters Walke & Mamon 89 filaments Hernquist, Katz & Weinberg 95

Is a group collapsing or virialized?

Mamon 93, astro-ph/9308032, 95 astro-ph/9511101

Fundamental track

Hickson compact groups & fundamental track

Mamon 93, astro-ph/9308032, 95, astro-ph/9511101 1000 R=cst L_B 100 Vir × X $^{\times}$ $_{\times}$ XX 10 \times problematic 0.01 0.1 $t_{\rm cr} / t_0$

How frequently do compact groups form?

Extended Press-Schechter estimates

after Mamon 00, Turku, astro-ph/9909019

For 100 Virialized: 4 Compact 10 Loose 0.3 Fossil

collapsing groups are frequent enough to explain CGs!

Gary MAM

Compact groups of galaxies

very high density & low velocity dispersion

direct mergers

should be very elliptical-rich!

Galaxy morphologies

compact groups of galaxies are ...

How frequently do galaxies merge in groups?

Mamon 00, astro-ph/9911333

Theoretical rates of galaxy mergers, function of:

- environment
- galaxy mass
- position in group/cluster

morphology-density relation

2 types of mergers

Mergers after orbital decay by dynamical friction

Direct mergers (« satellite-satellite »)

Merger rate vs. environment

Roos & Norman 79 x-section (no grav. focussing)

$k = 2\sqrt{\pi}\alpha_p \alpha_v r_h^2 \sigma_g K(\sigma_{\rm cl}/\sigma_g)$

Merger rate versus galaxy mass Mamon 00, astro-ph/9911333

$$k(m, \lambda m) = \frac{8G^2m^2}{\sigma_{\rm cl}^3} \left(\frac{1+\lambda^{1/3}}{2}\right)^2 \left(\frac{1+\lambda^{2/3}}{2}\right)^2$$

$$\frac{dN}{dt} = n\overline{k}(m) = \int_{\lambda_{\min}m}^{\lambda_{\max}m} k(m,\lambda m) \frac{dn}{d(\lambda m)} d(\lambda m)$$

Gary MAMON, IAP, 7 Dec 2005, Groups of galaxies in the ne

mean merger rate

Schechter 76 mass function

			$-\alpha$	
dn	n_*	(m)		(m)
	=		exp	— —
dm	m_*	m_*	-	(m_*)
		\ /		\ /

$$n\overline{k}(m) \approx 0.5 \frac{G^2 n_* m_*^2}{\sigma_{\text{cl}}^3} \mathbb{R}(m/m_*)$$

$$\mathsf{R}(x) = x^{3-\alpha} \sum_{j=0}^{6} \operatorname{Min}(j, 7-j) \Big[\Gamma(1+j/3-\alpha), \lambda_{\min}x) - \Gamma(1+j/3-\alpha), \lambda_{\max}x) \Big]$$

Direct merger rate vs. mass

Merger rates versus galaxy position in group/cluster x-secs \longrightarrow modulated by global tidal field elongated galaxy orbits in clusters: $R_p / R_a \cong 0.2$ Ghigna et al. 98 stars in galaxy feel *tidal shock* Ostriker et al. 72

 $\Delta v \approx F_{\text{tide}} \times \Delta t \approx \frac{GM(R_p)}{R_p^3} r \times \frac{R_p}{V_p} \qquad r = r_t \quad E_{\text{shell}} \approx -\frac{Gm(r_t)}{r_t} \approx \Delta E_{\text{shell}} \approx \frac{1}{2} (\Delta v_{\text{tide}})^2 \text{ White 83}$

Merger rates versus galaxy position in group/cluster

$$\mathsf{R} = n\overline{k} \approx 0.5 \, G^2 \left\langle \frac{n_* m_*^2}{\sigma_{\rm cl}^3} f(m/m_*) \right\rangle_{\rm orbit} \approx 0.5 \, G^2 \, \frac{n_*(R) m_*^2(R)}{\sigma_{\rm cl}^3(R)} f[m/m_*(R)]$$

fraction of mass in galaxies at R

$$n_*(R) \propto \frac{\eta(R)\rho(R)}{m_*(R)} \propto \rho(R) = n_*^{\text{field}} \frac{\rho(R)}{\rho_{\text{field}}}$$

$$m_*(R) \approx m_*^{\text{field}} \frac{M_{cl}(R_p)}{M_{cl}(R_{\text{vir}})}$$

cluster

Do we understand the morphology-density relation in groups?

Gary MAMON, IAP. 7 Dec 2005, Groups of ga

Origin of Helsdon & Ponman morphology-density relation in X-ray groups

can be understood if:

 $\frac{\text{merger rate in groups today}}{\text{merger rate in clusters today}} = \frac{\text{average merger rate in group progenitors}}{\text{average merger rate in cluster progenitors}}$

AND

little erasure of morph. segregation during group/group mergers

independent of mass

AND

direct merger rate frictional merger rate

History of mass accretion

van den Bosch 02

mass accretion of today's groups ≈ mass accretion of today's clusters

Direct mergers vs dynamical friction

$$\tau_{\text{friction}} \approx \operatorname{cst} \frac{v^{3}}{G^{2} \rho m \ln \Lambda}$$

Chandrasekhar 43

$$\tau_{\text{direct}} \approx \operatorname{cst} \frac{\sigma_{\text{cl}}^{3}}{G^{2} n_{*} m_{*}^{2}} \operatorname{R}(m/m_{*})$$

$$\frac{\tau_{\text{direct}}}{\tau_{\text{friction}}} = 8\pi \frac{\rho}{n_{*} m_{*}} \left(\frac{\sigma_{v}}{v_{c}}\right)^{3} \frac{\ln[M(R)/m]}{\operatorname{R}(m/m_{*})/(m/m_{*})}$$

scales with group/cluster mass only logarithmically!

Helsdon & Ponman X-ray group morphology-density relation understood!

Direct mergers vs dynamical friction (ctd)

$$\frac{\tau_{\text{direct}}}{\tau_{\text{friction}}} = 8\pi \Gamma (2 - \alpha) \left(\frac{\sigma_{\text{cl}}}{v_{\text{circ}}} \right)^3 \frac{\ln[M(R)/m]}{R(m/m*)/(m/m*)}$$
$$= \frac{R_{\text{friction}}(m/m*)}{R(m/m*)}$$

Merger rates vs. mass

How far does one see the effects of the group environment?

How far do galaxies bounce out of groups (and clusters)?

Observations vs. normalized radius

change of colors & morphological mix at 1-2 r₂₀₀

How far can galaxies bounce out of groups?

Table 1: Rebound radius in different scenarios

\widetilde{r}	\widetilde{t}	δ_0	$y_{ m ta}$	$r_{ m reb}/r_{ m 100}$	
1.0	3.00	2.69	0.229	1.78	
2.0	2.50	2.42	0.258	0.87	
2.0	2.00	2.15	0.296	1.03	
1.0	2.00	2.15	0.296	2.46	
1.5	2.50	2.42	0.258	1.25	
2.3	2.50	2.42	0.258	0.73	
2.4	2.17	2.24	0.282	0.77	
2.3	3.58	2.99	0.205	0.55	
	$\begin{array}{c} \widetilde{r} \\ 1.0 \\ 2.0 \\ 2.0 \\ 1.0 \\ 1.5 \\ 2.3 \\ 2.4 \\ 2.3 \end{array}$	$\begin{array}{ccc} \widetilde{r} & \widetilde{t} \\ 1.0 & 3.00 \\ 2.0 & 2.50 \\ 2.0 & 2.00 \\ 1.0 & 2.00 \\ 1.5 & 2.50 \\ 2.3 & 2.50 \\ 2.4 & 2.17 \\ 2.3 & 3.58 \end{array}$	$\begin{array}{c cccc} \widetilde{r} & \widetilde{t} & \delta_0 \\ \hline 1.0 & 3.00 & 2.69 \\ 2.0 & 2.50 & 2.42 \\ 2.0 & 2.00 & 2.15 \\ \hline 1.0 & 2.00 & 2.15 \\ \hline 1.5 & 2.50 & 2.42 \\ 2.3 & 2.50 & 2.42 \\ 2.4 & 2.17 & 2.24 \\ 2.3 & 3.58 & 2.99 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $r_{\rm rebound} = 1$ to 2.5 r_{100}

Mamon, Sanchis, Salvador-Solé & Solanes 04

Following orbits...

Group internal kinematics

ongoing ...

with Andrea Biviano (*Trieste*) & Trevor Ponman (*Birmingham*)

Data

GEMS: groups pointed at with X-ray telescopes:

- \rightarrow group centers, temperatures
- \rightarrow classes:
 - G = group emission
 - H = galaxy « halo » emission

U = undetected

NED: incl. SDSS-DR4, 6dFGS-DR2 $\theta < 2 \theta_{vir}$ from Max(σ_v , 300 km/s) $|v-v_{group}| < 3 Max(\sigma_v$, 300 km/s) → galaxy velocities (& errors), morphological types

2MASS: galaxy K-band magnitudes

Interloper removal

Gary MAMO

Which is the best method to estimate the virial radius?

from group velocity dispersion

→ pure NFW

« sigvnfw »

ightarrow cosmological M- $\sigma_{\!v}$ « Borgani »

from temperature

$$\frac{h_{70} r_{\Delta}}{1 \text{Mpc}} \approx \sqrt[3]{\frac{200}{\Delta}} \frac{h_{70} M_{\Delta}}{1.14 \times 10^{14} M_{\text{sun}}}$$

 M_{Δ} from *M*-*T* relation

<u>from K-luminosity</u> Lin, Mohr & Stanford 03 corrected for incompleteness calibrated on *M-T* relation of Finoguenov et al. 01

Computing line-of-sight velocity dispersion profiles

<u>from data:</u> stack groups: normalize radii to r_{vir} & velocities to v_{vir} unweighted or weighted equal number of galaxies / radial bin (omitting central galaxy)

<u>from (NFW) model:</u> $\beta = 0$: $I(R) \sigma_{los}^2(R) = 2G \int_{-\infty}^{\infty} \frac{\sqrt{r^2 - R^2}}{2} v(r) M(r) dr$

$$I(R) O_{los}(R) = 2O \int_{R} r^{2} r^{2}$$

E/S0s in clusters: Coma Lokas & Mamon 03 ENACS Biviano & Katgert 04

for some simple
$$\beta(r)$$
 $I(R) \sigma_{los}^2(R) = 2G \int_R^{\infty} K(r,R) v(r) M(r) dr$
e.g. $\beta = \frac{1}{2} \frac{r}{r+a}$ Mamon & Łokas 05b

tracer density \propto mass density or fit separately $v(r) \& \rho_{tot}(r)$

help the extreme M-T based r_{vir}'s?

Hot vs cold G groups

cold G groups: dispersion drop near center? energy dissipation in coalescing compact cores?

Temperature of H groups

Gary MAMO

High vs low β_{spec} groups

Stellar mass - velocity dispersion

most low β G groups have normal velocity dispersion

Gary MAMON, IAP, 7 Dec 2005, Groups of gala

Conclusions

CGs form at fast enough rate to replenish fossilized ones

Massive galaxies in groups suffer more direct than frictional mergers

Morphology-density relation difference between X-ray groups and clusters is as expected from mergers

Group environment felt out to ~ 2 r_{200}

No break in *M*-*T* relation

Low *T* groups may show energy dissipation near center

Low β groups caused by high *T* & much less concentrated (or in circular orbits) \rightarrow recent group-group mergers

Outliers in L_K - σ_v & fundamental track: coalescing or chance alignments?