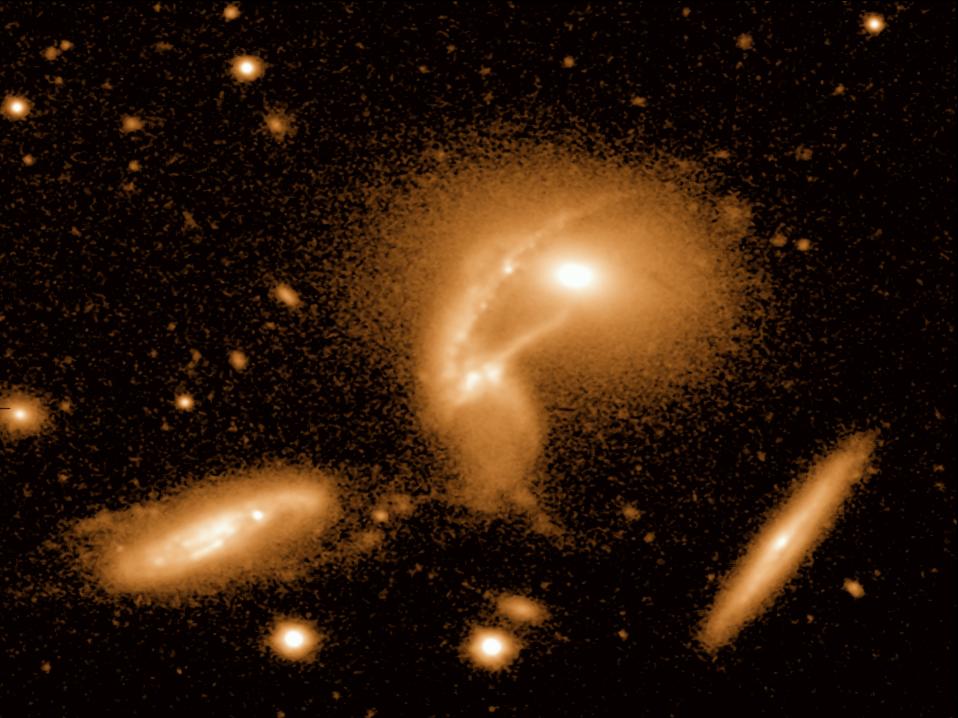
LOW LUMINOSITY AGNS IN HICKSON CONPACT GROUPS

Mª Ángeles Martínez Supervisor: Ascensión del Olmo Instituto de Astrofísica de Andalucía(IAA)-CSIC,Granada ,Spain

Collaborators: R.Coziol -- Dep. Astronomía. Univ. Guanajuato, México J.Masegosa,I.Márquez,J.Perea -- IAA, Spain

OVERVIEW

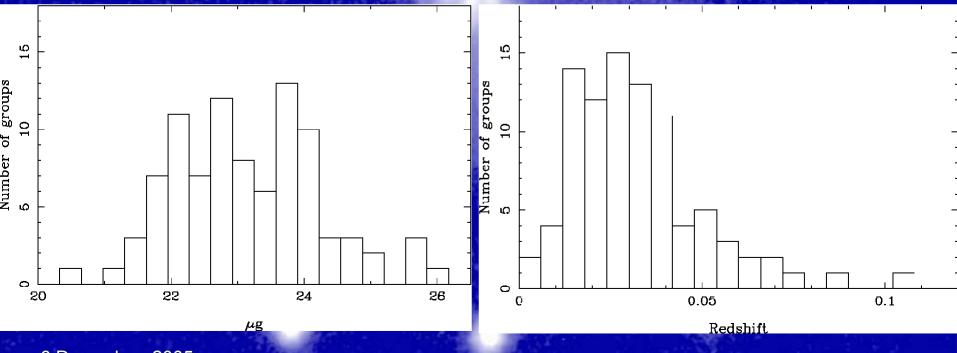
1.- Introduction
 2.- Hickson Compact Groups.
 3.- The sample
 4.- Observations and reduction procedures
 5.- Analysis and first results


1.- INTRODUCTION

- The environment play an important role in the evolution of galaxies
- Study the relationship between low luminosity nuclear activity and gravitational interaction
- Tidal torques: the mechanism to transport material to the centre
- Compact groups: ideal places to study effects of gravitational interaction

2.- HICKSON COMPACT GROUPS

4-8 members


- Presence of all morphological type:49% of latetype of galaxies in HCGs,82% in the field (Hickson 1982,1997)
- High galaxies density similar to those observed in cluster cores
- Low velocity dispersions (200km/s)
- Crossing time $T_{cr} = \frac{\pi}{\sqrt{3}} \frac{R_{H}}{\sigma_{z}} \propto 10^{8} 10^{9} years$ Group M/L ~ 4-10 Galaxy M/L

THE PROJECT

- Measure nuclear activity in galaxies belonging to compact groups
- Characterize this activity as a function of the properties of the host galaxies and parent group.
- Well-defined statistically complete sample
 Medium resolution spectroscopy in the range from 3600Å to 7200Å

3.- OUR SAMPLE
Group compactness µ_B≤ 24.4 mag/arcsec²
Redshift completeness z ≤ 0.045
65 groups with 281 galaxies (223 North)

B magnitude distribution of the whole sample and the North subsample

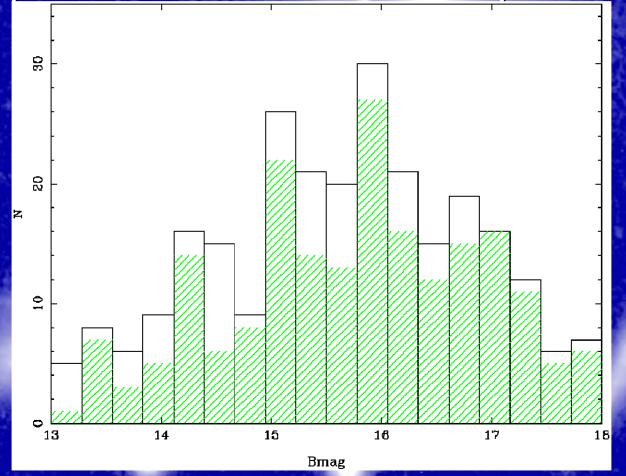


TABLE 1: THE SAMPLE

Name ⁽¹⁾	N.gal. ⁽²⁾	z ⁽³⁾	$\sigma_V^{(4)}$	$\mu_{G}^{(5)}$	HI ⁽⁶⁾	$log L_X^{(7)}$	Radio ⁽⁸⁾	$L_{FIR}^{(9)}$
HCG1	4	3.39E-02	85.110	23.74	ш	< 42.42	а	
HCG3	3	2.55E-02	251.19	23.83	ш	<41.71	a	c (a b d)
HCG4	4	2.80E-02	338.84	23.91	Ш	< 11. , 1		a (c d)
HCG5	3	4.10E-02	147.91	22.15	Ш	$<\!42.54$		a (e u)
HCG6	4	3.79E-02	251.19	21.95	Ш	<42.43		
HCG7	4	1.41E-02	89.130	23.81	Ш	<42.03	а	a c (b d)
HCG10	4	1.61E-02	208.93	23.92	Ш	<41.43	c	a c (b d)
HCG13	5	4.11E-02	181.97	23.92		<42.40	a	,
HCG16	4	1.32E-02	123.03	22.86	Ш	41.68	a,b,c y d	acd (b)
HCG21	5	2.51E-02	112.20	23.90	Ш	<42.33	11- 1	a b (c)
HCG22	3	9.00E-03	43.650	22.62	Ш	<41.15		c (a b)
HCG23	4	1.61E-02	169.82	24.08	Ш	< 41.72	a,b,d	. ,
HCG24	5	3.05E-02	199.53	23.23	Ш	$<\!42.52$		
HCG26	7	3.16E-02	199.53	22.72	Ш	$<\!41.95$	а	
HCG28	3	3.80E-02	85.110	22.22		$<\!42.70$	b	
HCG30	4	1.54E-02	72.440	23.49	Ш	$<\!42.07$		c (a b d)
HCG31	3	1.37E-02	56.230	21.90	Ш	$<\!41.93$	а	ac b G
HCG32	4	4.08E-02	208.93	23.71		$<\!42.51$		
HCG33	4	2.60E-02	154.88	22.64	Ш	41.77	с	c (a b d)
HCG34	4	3.07E-02	316.23	21.72	Ш	$<\!42.55$	a,b,c	
HCG37	5	2.23E-02	398.11	22.65	Ш	42.12	a b d	a b (c d e)
HCG38	3	2.92E-02	12.880	23.44	Ш	$<\!42.01$		a bc (d)
HCG40	5	2.23E-02	147.91	21.18	Ш	$<\!41.73$	a b c d	c d (a b e)
HCG42	4	1.33E-02	213.80	23.12	Ш	42.16		
HCG43	5	3.30E-02	223.87	23.75	Ш	$<\!42.40$	a b	
HCG44	4	4.60E-03	134.90	24.00	Ш	$<\!40.84$	$\mathbf{a} \mathbf{c} \mathbf{d}$	a c d (b)
HCG46	4	2.70E-02	323.59	23.71	Ш	$<\!42.25$	а	(a b c d)
HCG47	4	3.17E-02	42.660	22.94	Ш	<42.33	a b	
HCG48	3	9.40E-03	302.00	23.72	Ш	41.58		b (a c d)
HCG49	4	3.32E-02	33.880	22.80	Ш	$<\!42.26$	a b	
HCG51	5	2.58E-02	239.88	23.39	Ш	42.99	с	
HCG52	3	4.30E-02	181.97	23.95		$<\!42.50$		
HCG54	4	4.90E-03	112.20	22.15	Ш			а
HCG56	5	2.70E-02	169.82	22.44	Ш	<42.23		b (a c d e)
HCG57	7	3.04E-02	269.15	23.73	Ш	41.98	d	~
HCG59	4	1.35E-02	190.55	22.74	Ш	$<\!42.00$	а	\mathbf{a} (b c d)
HCG61	3	1.30E-02	87.100	21.43	Ш	$<\!61.91$	с	c (a d)
HCG62	4	1.37E-02	288.40	23.07	Ш	43.04	a	b (a c d)
HCG63	3	3.11E-02	131.83	24.04		<42.49	d	
HCG64	3	3.60E-02	213.80	23.18	Ш	<42.48	,	1 ())
HCG67	4	2.45E-02	208.93	22.82	Ш	41.69	bc	b (a c d)
HCG68	5	8.00E-03	154.88	22.95	Ш	41.27	abc	a c (b d e)
HCG69	4	2.94E-02	223.87	22.22	Ш	<42.33	ab	b (a c d)

Name ⁽¹⁾	№gal. ⁽²⁾	z ⁽³⁾	${\sigma_V}^{(4)}$	$\mu_{G}^{(5)}$	HI ⁽⁶⁾	$log L_X^{(7)}$	Radio ⁽⁸⁾	$\mathbf{L}_{FIR}^{(9)}$
HCG72	4	4.21E-02	263.03	21.80	HI	<42.54		
HCG72 HCG74	5	4.21L-02 3.99E-02	316.23	22.12	HI	< 42.67	а	
HCG75	6	5.55E-02 4.16E-02	295.12	22.72		<42.72	b	
HCG76	7	4.10E-02 3.40E-02	235.12 245.47	23.52	HI	<42.66		
HCG79	4	1.45E-02	138.04	20.50	HI	<41.70	а	a (b c d)
HCG80	4	3.10E-02	269.15	22.38	HI	<42.16	a	··· \··,
HCG82	4	3.62E-02	616.60	23.29	HI	42.29	c	
HCG85	4	3.93E-02	363.08	22.00	HI	42.27	a	
HCG86	4	1.99E-02	269.15	23.94		42.32		c (a b d)
HCG87	4	2.96E-02	120.23	21.91	HI	<42.36		a (b c d)
HCG88	4	2.01E-02	26.920	23.51	HI	<42.18	а	a c d (b)
HCG90	4	8.80E-03		22.07		41.48		a bd (c)
HCG91	4	2.38E-02	181.97	23.91	HI		a b	ad b (c)
HCG92	4	2.15E-02	389.05	22.25	HI	42.16	c d	b c (d e)
HCG93	4	1.68E-02	208.93	24.30	\mathbf{HI}	<41.34	a b	•
HCG94	7	4.17E-02	478.63	23.16	HI		а	
HCG95	4	3.96E-02	309.03	21.41	HI	<42.43	b c d	
HCG96	4	2.92E-02	131.83	21.94	HI	$<\!42.11$	ac	ac $(b d)$
HCG97	5	2.18E-02	371.54	23.71	HI	42.78		b (a c d e)
HCG98	3	2.66E-02	120.23	22.03	\mathbf{HI}	$<\!42.27$		(a b c d)
HCG99	5	2.90E-02	263.03	22.73	HI	$<\!42.34$		c (a b d c)
HCG100	3	1.78E-02	89.130	22.91	HI	<41.99	a b	a c (b d)
le have	e com	piled	data	a fro	m d	our sa	ample	found
			Cicile					
the bib	oliogra	apny:						
Redshift and velocity dispersion of the groups								
lickson et al.1992)								
Mean (Mean group surface brightness							
H data (Verdes-Montenegro et al. 2001)								

- Radio continuum (Menon&Hickson 1985,Menon 1995)

W in

- X-ray observations (Ponman et al. 1996)

-FIR Luminosity (Verdes-Montenegro et al. 1998)

4.- OBSERVATIONS AND REDUCTION PROCEDURES

Telescopes and instruments

TABLE2: TELESCOPES

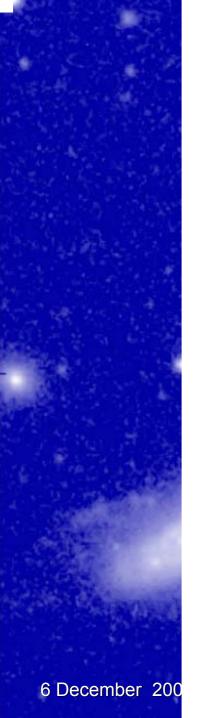

Observatory	Telescope	Instrument	Grism	Espectral range	Dispersion
Calar Alto(CAHA)	2.2m	CAFOS	B100	3200Å-5800Å	2 Å/px
			G100	4900Å-7800Å	2.12\AA/px
			B200	3200Å-7000Å	4.58\AA/px
Sierra Nevada(OSN)	1.5m	ALBIREO	Red4	3600Å-7500Å	2\AA/px
La Palma(RM)	2.5m	ALFOSC	$\mathbf{GR4}$	3200Å-9100Å	3 Å/px
			GR8	5825Å-8350Å	1.24\AA/px
San Pedro Martir(SPM)	2.1m	Boller-Chivens	R300	3800Å-7500Å	4.3Å/px

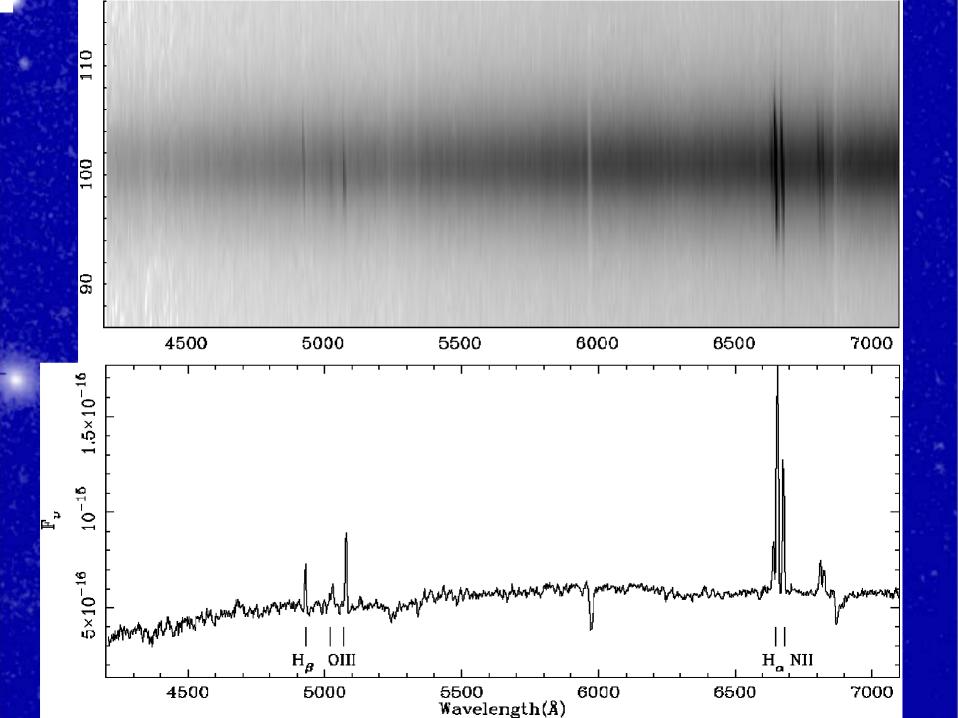
TABLE 3:CCD DETECTORS

Observatory	Detector	Size	Dimensions	Scale
Calar Alto	SITE	$24 \ \mu_m/\mathrm{px}$	2048x2048	0.53arcsec/px
Sierra Nevada	Loral/Lesser	$15 \ \mu_m/\mathrm{px}$	2048x2048	0.9arcsec/px
La Palma	Loral/Lesser	$15 \ \mu_m/\mathrm{px}$	2048×2048	$0.19 \operatorname{arcsec/px}$
San Pedro Martir	SITE	$24 \ \mu_m/{ m px}$	1024x1024	$1.05 \mathrm{arcsec/px}$

Observed groups

We have observed in collaboration with Roger Coziol (Departamento de Astronomía-Universidad de Guanajuato) 78% (223) from the whole sample. This percentage rise up to 87% if we take into account only the North subsample. We expect to end up with the observations of the North subsample next year.

TABLA 4: OBSERVED GROUPS.


Names	Obs.Gal	Observatories	Grisms
HCG1	abcd	CAHA	B100+G100
HCG3	abcd	NOT	GR4
HCG5	abcd	CAHA	B100+G100
HCG6	abcd	NOT	GR4
HCG7	abcd	CAHA	B100+G100
HCG10	abcd	CAHA & SPM	B100+G100 & R300
HCG13	abcd	NOT	GR4
HCG23	abcd	SPM& OSN	R300 & Red4(600)
HCG30	abcd	CAHA	B100+G100
HCG31	a b c G Q	CAHA & RM	B100+G100 & GR4
HCG33	abcd	CAHA	B100+G100
HCG34	abcd	CAHA	B100+G100
HCG37	abcde	SPM & CAHA	R300 & B100+G100
HCG38	abc	CAHA	B100+G100
HCG40	abcde	SPM & RM	R300 & GR4+GR8
HCG44	abcd	SPM	R300
HCG46	abcd	SPM	R300
HCG47	a b c d	CAHA	G100
HCG49	abcd	RM	GR4
HCG51	abcdef (g)	CAHA & SPM	G100 & R300
HCG52	abc	САНА	G100
HCG54	abcd	SPM & RM	R300 & GR4+GR8
HCG56	abcde	SPM	R300
HCG57	abcdefg(h)	CAHA & SPM	B100+G100 & R300
HCG59	abc(d)	OSN	Red4(600)
HCG61	acd	SPM	R300
HCG62	abc	SPM	R300
HCG68	abcde	SPM & OSN	R300 & Red4(600)
HCG69	abcd	SPM	R300
HCG72	abcdf	CAHA & SPM	G100 & Red4(600)
HCG74	abcd (e)	SPM	R300
HCG75	abcdef	SPM	R300
HCG79	abcd	SPM & RM	R300 & GR4+GR8
HCG80	abcd	OSN	Red4(600)
HCG82	abcd	CAHA & SPM	G100 & R300
HCG85	abcd	САНА	B100+G100 & B200
HCG88	abcd	SPM	R300
HCG92	bcde	SPM	R300
HCG93	abcd	CAHA	B100+G100
HCG94	abcd (efg)	SPM	R300
HCG95	abcd	CAHA & RM	B100+G100 & R300
HCG96	(a) b c (d)	САНА	B100+G100
HCG97	abcde	SPM & NOT	R300 & GR4
HCG98	abcuc	SPM & OSN	R300 & Red4(600)
HCG99	abcde	SPM & CAHA	R300 & B100+G100
HCG100	abede	CAHA & OSN	B100+G100 & Red4(600)

Observation strategy

- 3 blue and 3-4 red spectrophotometric standard stars each night
- 3-4 lamp calibration exposures
- 20 bias
- Internal and Sky flats
- 1-2 radial velocity standard stars
- Non-emission galaxies.
- Some galaxies of the sample were observed in different telescopes

HCG93a

5.- ANALISYS AND FIRST RESULTS

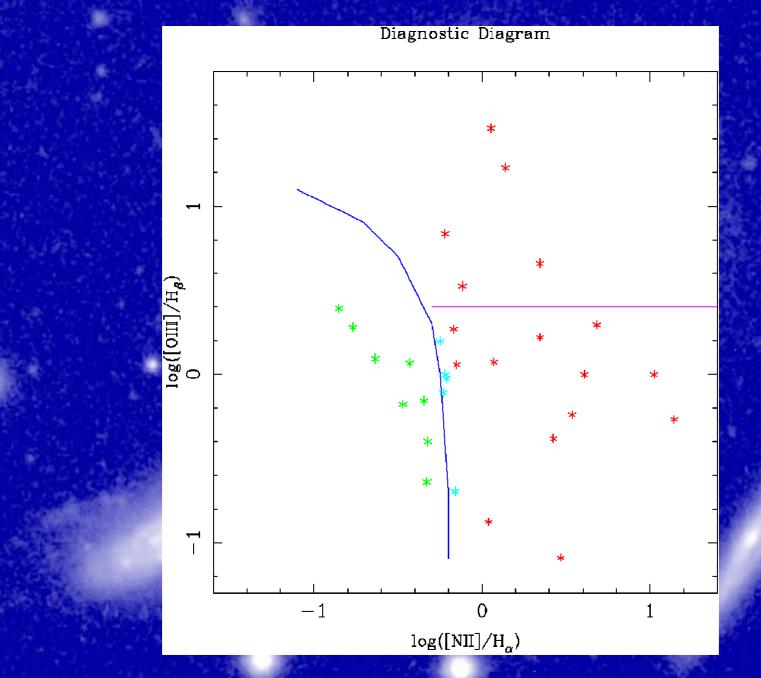
Unidimensional spectra:

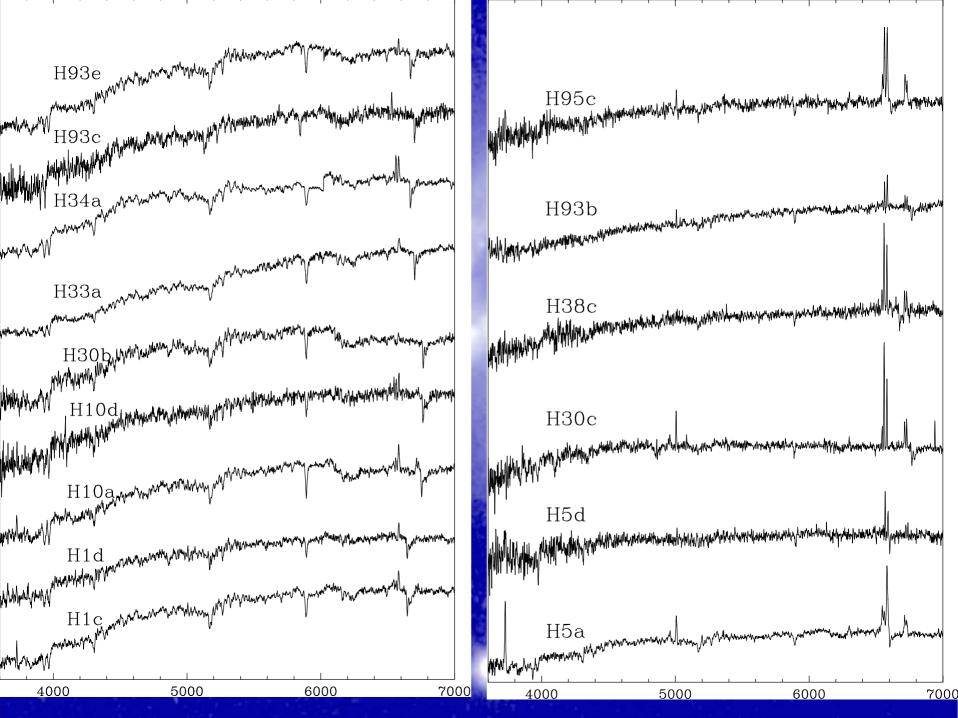
- Emission and Absorption lines
- Test redshift of the galaxies
- Flux estimation of emission lines
- Line ratios

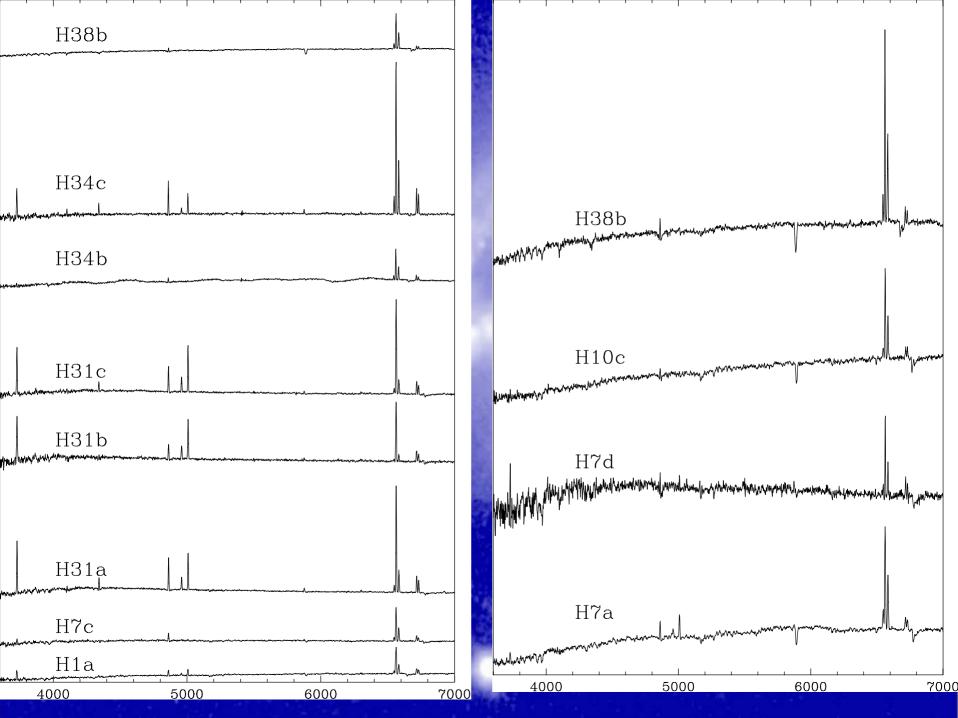
Bidimensional spectra:

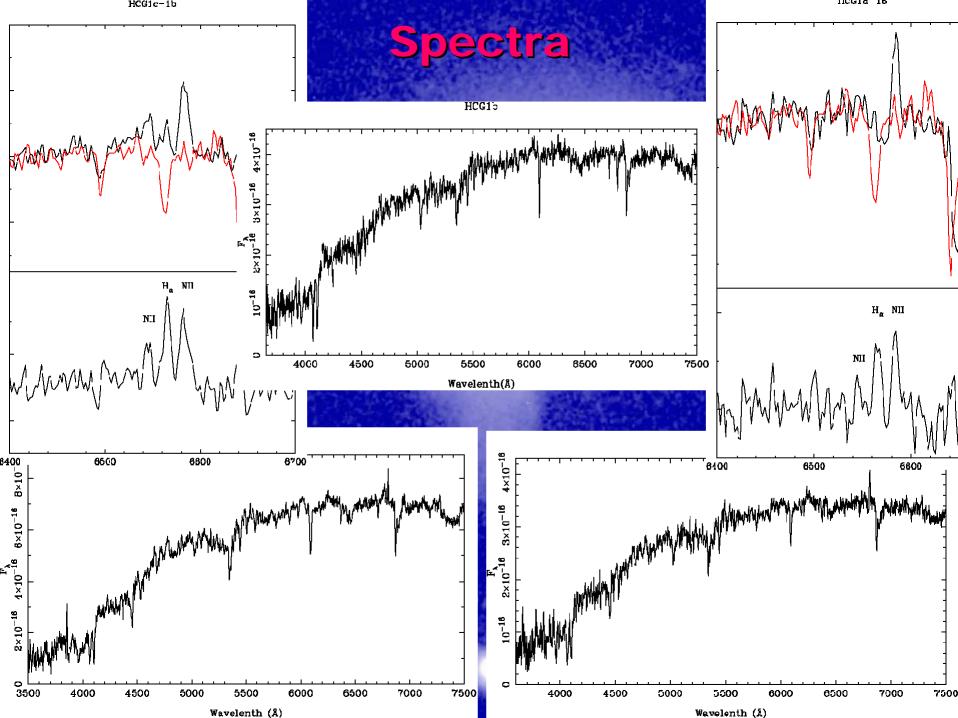
- Emission
- Extension and location
- Rotation Curves

Diagnostic Diagrams

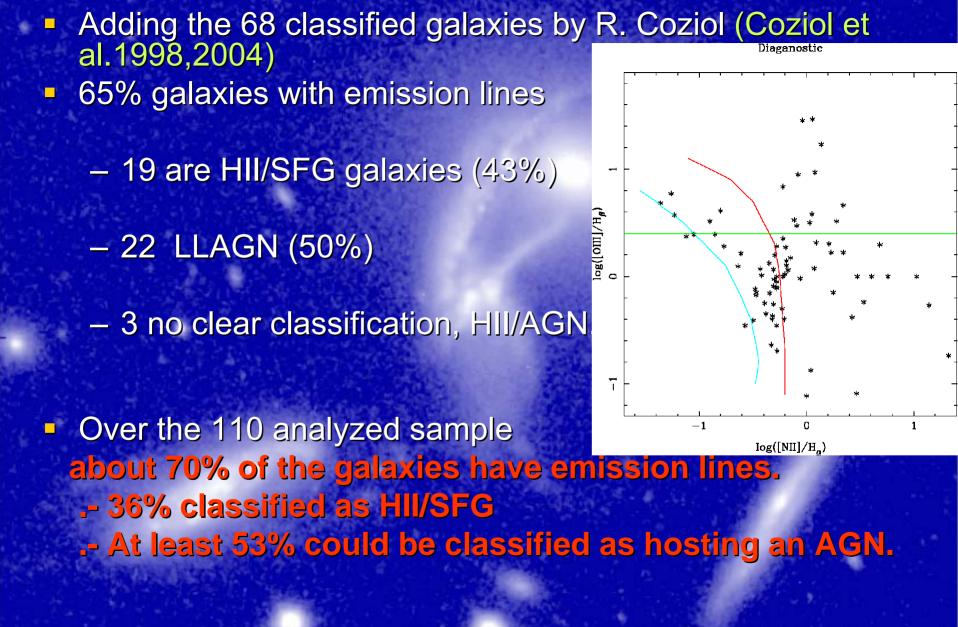

We use diagnostic diagrams to classify the activity presents in our sample: -lonized gas by O,B hot stars (HII regions) -Non-thermal continuum -Shock waves hot gas The most useful are: - Log([OIII](5007Å)/Hβ) vs Log([NII](6583Å)/Hα) - Log([SII](6717Å+6731Å)/Hα) vs Log([NII]/Hα)


- Log([O]]](5007Å)/Hβ) vs Log([O]](6300Å)/Hα)


6 December 2005


TABLE 5: EMISSION LINES

Line	Wavelength(Å)
[OII[3726/28
H_{γ}	4340
$\mathrm{H}^{+}_{oldsymbol{eta}}$	4861
[OIII]	4959
[OIII]	5006
[OI]	6300
[NII]	5648
H_{α}	6563
[NII]	6583
[SII]	6717
[SII]	6731



Conclusions

From the 42 observed galaxies, 31of them show clear emission lines (74%) From these 31: - 8 (26%) could be classified as HII-region - 17 (55%) show spectra of LLAGN (Sy2, LINER) - only one galaxy has wide H α and H β components - the remaining 5 (16%) are transition objects between HII/LINER

Future work

- End up with the observations, reduction and classification of the nuclear activity in the North subsample.
- Characterization of the Stellar population and substraction using theoretical templates
 Nuclear activity as a function of the properties of the host galaxies and the parent group.

END

