

and near-infrared The optical properties of nearby groups of galaxies

Somak Raychaudhury

Plan of talk

- Statistically studying Groups of galaxies
- The GEMS survey
- Luminosity functions of groups and clusters
 - Optical and near-IR luminosity functions
 - mergers and galaxy evolution
- Star formation in groups in supercluster filaments

Collaborators:

Trevor Miles and Scott Porter (Birmingham) Trevor Ponman (Birmingham) Duncan Forbes (Swinburne)

How is the group environment different from that in clusters?

Nicastro et al. 2005 for the LG log T(k)=5.5-

Group Evolution Multi-wavelength Study [GEMS]

- 60 groups sample selection:
 - We merged all available optical catalogues of groups (4000 of them)
 - Compared the groups to the ROSAT PSPC archive (X-ray integrations of > 10,000 s).
 - We have optical observations in three filters (B, R & I) for 25 groups – selection from colourmagnitude relation.
- Virial radius r₅₀₀ derived from Temperature, following Evrard, Meitzler & Navarro (ApJ, 1996)
- · Groups in a variety of evolutionary states

http://www.sr.bham.ac.uk/gems

GEMS: BRI Photometry

- · 17 groups at INT 2.5m (La Palma)
 - Wide Field Camera 4 CCDs
 - \cdot 34 x 34 arcmin
 - 1 arcsec seeing in I-band
- 8 groups at ESO 2.2m (Chile)
 - Wide Field Imager 8 CCDs
 - 34 x 33 arcmin
 - 0.9 arcsec seeing in I-band

12 X-ray bright, 13 X-ray faint groups

Reliable photometry down to $M_B = -13$

HI followup (Forbes, Brough, Kilborn), XMM/Chandra followup (Birmingham)

Divide groups into two classes

- According to X-ray flux (since temperature not so well determined)
- X-ray bright
 - $L_X > 10^{41.7} erg/s$
- · X-ray dim
 - $L_X \le 10^{41.7} erg/s$

Hickson Compact Group Luminosity Functions

De Oliveira & Hickson (ApJ 1991) plates

Hunsberger, Charlton & Zaritsky (ApJ 1998) ccd

Composite LF of GEMS Groups

Compare: LF of field galaxies (LCRS)

Lin et al. LCRS (ApJ 1996)

Miles Raychaudhury Forbes Goudfrooij Kozhurina-Platais 2004

Dynamical friction helps mergers

where: M = mass of intruder galaxy v = speed of intruder galaxy w.r.t medium

A low velocity dispersion environment is more conducive to tidal interaction and merger

Merger cross-section would be higher for more massive and larger galaxies

Intermediate-L galaxies are preferentially depleted due to mergers

- Tidal interaction and merger more effective in low-σ environment
- Mergers more likely between larger galaxies or between a large galaxy and a dwarf

Also likely

Star formation boosting B magnitudes?
 Varying mixture of LFs of sub-populations?

Could the dip be due to star formation boosting B magnitudes?

2MASS K-band

Miles Raychaudhury Russell 2005

- The dip is present in the near-IR
- Goes away when averaged out to R₅₀₀

The LF in Groups and Clusters

Ferguson and Sandage (AJ 1991)

Table 1. Analytical functions and fixed parameters for the type-specific luminosity functions of Jerjen (2001).

Galaxy Type	Function	Parameter 1	Parameter 2
Elliptical	Gaussian	$\overline{M_B}$ = -18.3	$\sigma_{(M < \overline{M_B})} = 2.2$
			$\sigma_{(M > \overline{M_B})} = 1.3$
S0	Gaussian	$M_B = -18.9$	$\sigma = 1.1$
Spiral	Gaussian	$M_B = -18.3$	$\sigma = 1.4$
dIrr	Schechter	$M_B^* = -16.2$	$\alpha = -1.0$
dE	Schechter	$M_B^{\tilde{*}} = -17.8$	$\alpha = -1.4$

Many groups with lower L_X (consequently lower σ) have higher ΔM

GEMS groups- brightest galaxies

X-ray dim groups have very red central galaxies

Difference in magnitude between brightest and second brightest galaxies

Fossil groups: end result of this kind of merger?

Khosroshahi et al. MNRAS 2005 Jones Ponman Forbes MNRAS 2003 NGC 6482; nearest fossil Khosroshahi et al 2004

- Isolated Elliptical Galaxy (M₁- M₂ > 2)
- 70% of optical
 emission from
 dominant elliptical

 X-ray Luminosity and morphology is that of a poor group of galaxies rather than a single galaxy.

Star formation as a function of environment

Balogh et al 2004, also Goméz et al 2003

The η Parameter is a star formation indicator

4

3000

2000

Number of galaxies

Little circles= 2PIGG groups (Eke et al 2004)

The Pisces-Cetus Supercluster at z=0.06Part of the supercluster is

in the 2dFGRS

Enhanced star formation in the Pisces-Cetus SC

PG= Poor groups (2PIGG) $4 \le N < 10$

Porter & SR 2005, MNRAS, astro-ph/0511050

Conclusions

- Merger-driven galaxy evolution is most important in dynamically sluggish poorer groups, even at z=0
- X-ray dim groups have
 - a deficit at intermediate luminosities in their optical and near-IR luminosity functions
 - a more centrally concentrated early-type galaxy population
- Star formation is enhanced in groups residing in supercluster filaments compared to that is "field galaxies"
 - Star formation is further enhanced as galaxies and groups stream down intercluster filaments, far outside the virial radii of clusters