Environmental effects in galaxy clusters: from z=0 to z=0.2

Individual effects - cluster substructure and evidence(?) of galaxy destruction

Héctor Bravo-Alfaro

Dept. de Astronomia, Guanajuato. Mexico

- Abell 1367: E. Brinks, A. Boselli, I. Plauchu
- Abell 85: J. van Gorkom & Co.*, F. Durret, C. Lobo, J-M Islas (*) Bravo-Alfaro, Dwarakanath, Guhatakurta, Poggianti, Verheijen, Wilcots, Zabludoff
- Abell 1689/2667: J-P Kneib, L. Cortese, G. Covone

Overview

- 1. Introduction: context and goals
- 2. Observations: VLA-HI, NIR/Opt-imaging
- 3. Preliminary results on nearby clusters
 - A1367 A85 Z=0.02 Z=0.05

4. Evidence for galaxy destruction ?

A1689 A2667 Z=0.18 Z=0.02 1. Context

Evolution of galaxies in clusters: Nature or Nurture?

Initial conditions

Environment mechanisms

Gravitational

ICM-ISM

Direct mergings
Tidal interactions
Galaxy harassment

•Ram-pressure stripping
•Viscous stripping
•HI → H2
•Starvation

Targets:

 Nearby clusters: detailed effects of environment as a function of cluster properties and as a function of z.
 Compare with numerical simulations
 Get an independent method to trace cluster substructure. Catch groups in the infall process

Main goal: study the evolution of D-M and the SF history in galaxies as a function of environment

Galaxies in clusters: the Intra Cluster Medium (ICM)

Outskirts in Coma

a DSS B-band gray scale image. The contours are 0.3 (2.5 σ),

Bravo-Alfaro et al. 2001

HI and X-ray in Coma

(Bravo-Alfaro et al. 2000)

2. Observations: Clusters imaged in HI so far

ID	Velocity (km/s)	S:S0:E	L _x (erg/s)	Def _{HI}
Virgo Hydra	1026 3600	46:39:15	43.0	0.56
A 262	4704	47:32:21	44.0	0.48
Hercule	s 11000	51:35:14	43.9	0.21
Coma	7000	18:47:35	44.9	0.77
UMa	800			
A 1367	6595	43:40:17	43.5	0.42.
A 85	16500		45.0	
		Coming soon:		
A 2670	24000	44.4		van Gorkom & Co. in prep.
A 754	16700	44.6		"
A 2029	22800	45.2		"
A 2192	56100	44.6		"

Observations of Abell 1367 (z=0.02)

VLA - HI (21cm) Center-NW D-configuration (~45") 2 Cubes: A (7500km/s) "periphery" B (6500km/s) "center" Plus: Deep Halpha imaging & UV-GALEX

Observations Abell 85 (z = 0.055)

T_{int} ~ 80 horas (2001-2002) @ VLA C-configuration (17"-20" resolution) 3 Cubes: 14700 km/s – 18400 km/s 10 HI detections Plus: optical CFHT-MEGACAM images NIR-JK imaging

3. Results: Global view of A1367: HI-Xray-optical

Ascensión Recta (J2000)

Global view of A1367: HI-Xray-optical

Ascensión Recta (J2000)

XMM-Newton image of A85. Durret et al. 2005

Summary for clusters at z = 0

Enlarging the sample of clusters imaged in HI:
 Environmental effects → constrain dynamical models
 Close up of cluster substructure
 Distinguish different kind of groups in A1367 & A85
 HI content & 20cm radio flux → SFR vs ICM properties

Strong environmental effects in A1689 (z=0.18) and A2667 (z=0.23)

4. Bonus "track"

Some important remarks:

- 1. Numerical simulations: enhanced tidal effects in the outskirts of clusters (Mihos, Rudick et al.)
- Deep (very deep) observations in nearby clusters: evidence for ICL (idem)
- ESO 383-45: ram pressure or tidal stripped galaxy? (Kemp)
- 4. Numerical simulations: galaxy destruction and diffuse light in clusters (Calcaneo-Roldan et al.) Centaurus and Coma

1689[GH91]021

HST-broad band filters: F450W, F606W, F814W

B234908-262039 in A2667

1689[GH91]021

B234908-262039 in A2667 VLA (archive)-20cm radio

continuum on HST 450 filter

First (very first) results

- -14 blue knots analyzed in A2667 and six in A1689
- -Ages with very spread values: 10⁷ yrs 5x10⁸ (continuous star formation model)
- -Knots brighter than typical star clusters (M=-16 instead of M=-14)
- -Giant OB associations or tidal dwarfs?

Comparative checking

- -L (A2667's galaxy) = -22 vs. L (A1689's) = -20
- -Tail extensions: 75 kpc (A2667's) vs. 20 kpc (A1689's)
- -Typical knots luminosity: M = -14 (A2667's) vs. M = -12 (A1689's)
- -Radio continuum flux (20cm)

What will become the knots ?

Future work

B234908-262039 in A 2667 & 1689[GI 91]021 : Linking galaxy destruction and ICL at z=0.2? Knots future: ultra compact dwarfs progenitors or ICL? Asymmetry analysis of neighbor galaxies **Radial profiles of main galaxies** -Check deeper VLA-20cm images Estimate local ICM-density to predict the knots fate

Color-color diagram for A2667's galaxy

Color-color diagram for A1689's galaxy

F625W-F850LP

Calcaneo_Roldan et al. 2000

Late type galaxies around A1367

