Formation of Massive Stars

« With great advances achieved in our
understanding of low mass star formation, it is
tempting to think of high mass star formation
simply as an extension of low mass star formation.

e However...



Problems with the study of massive
star formation(1)

GM*?
Tk ™ Rl

For M >20 M, ; LcM* and Roc M
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Pk-H ~ 70.000 [ M j
yr 20 M Sun

Kelvin-Helmholtz time

=> The more massive the star, the less time It
spends In the pre-main sequence...



Problems with the study of massive
star formation(2)

. M -3 Rate of massive star
N(>M)~0.003 formation in the Galaxy
20M ¢,

N, (> M)~ "H N (M > 20M
yr
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Noys (> M) =200 M
20M ¢,

=> Massive, pre-main sequence stars are very
rare...



Summary of past lecture

Model of accretion via disk and ejection via
collimate outflows (jets) successful for
formation of solar-type stars and even
brown dwarfs.

Can this model be extended to high mass (>10
solar masses) stars?



Some problems with extending the picture of low-
mass star formation to massive stars:

 Radiation pressure acting on dust grains can
become large enough to reverse the infall of
maltter:

- Fgrav — GM*m/rZ
— F,,4 = Lo/4nr?c
— Above 10 M, radiation pressure could reverse infall



So, how do stars with M.>10M form?

e Accretion:

— Need to reduce effective o, e.g., by having very high
Macc

— Reduce the effective luminosity by making the
radiation field anisotropic
* Form massive stars through collisions of
Intermediate-mass stars Iin clusters
— May be explained by observed cluster dynamics
— Possible problem with cross section for coalescence
— Observational consequences of such collisions?



Other differences between low- and high-mass
star formation

Physical properties of clouds undergoing low- and high-
mass star formation are different:

— Massive SF: clouds are warmer, larger, more massive, mainly
located in spiral arms; high mass stars form in clusters and
associations

— Low-mass SF: form in a cooler population of clouds throughout
the Galactic disk, as well as GMCs, not necessarily in clusters
Massive protostars luminous but rare and remote

lonization phenomena associated with massive SF: UCHII
regions
Different environments observed has led to the suggestion

that different mechanisms (or modes) apply to low- and
high-mass SF



Still, one can think in 3 evolutionary
stages:

e Massive, prestellar cold cores: Star has not formed
yet, but molecular gas available (a few of these
cores are known)

e Massive hot cores: Star has formed already, but
accretion so strong that quenches ionization => no
HI1I region (tens are known)

« Ultracompact HII region: Accretion has ceased
and detectable HII region exists (many are known)



First, let’s consider massive,
prestellar molecular cores

e Only a handful know...

« Are low mass stars already formed In them
(before high mas stars do)?

« Should look like HMCs, only that cold.
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Massive but cold (and thus with low luminosity)

How are they found?
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PHYSICAL PARAMETERS OF
HOT MOLECULAR CORES

Diameter <0.1 pc

Mass 10 — 10* M
Temperature > 100 K
Density > 107 ¢m—3

Also quite luminous, L > 10% L, since star
already formed
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Disks and Jets In Young
Massive Stars?

e Young, low mass stars are characterized by
the simultaneous presence of disks and jets.

* |s this the case in young massive stars?

e To study this question, we have to center In
the hot molecular core stage.
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Figure 6 The CO outflow presumably driven by the FIR source IRAS120491-6129
from Henning et al. (2000). This figure illustrates three general properties of outflows
driven by massive protostars: low outflow speeds, poor collimation, and large masses.
The arbitrary cutoff velocities (shaded regions in the spectra) for the outflow also illus-
trate why outflow masses are uncertain and different authors disagree on the estimated

MdS5Cs.

In the HMC stage, it is
frequent to find
molecular outflows
assoclates with the
embedded stars. These
outflows disappear by
the UCHII stage.

Molecular outflows
from massive
protostars are believed
to be more massive,
but slower and less
collimated than
outflows from low
mass stars. However,
some sources well
collimated.




Two Micron Alf Sky Survey

HH 80-81 (GGD27)
In L291 dark cloud

Distance 1.7 kpc
(Rodriguez et al. 1980),

Luminosity: 2 x 10*
I—Sol

Star: B0.5 ZAMS

HH 80-81 also known as GGD 27 (Gyulbudaghian et al. 1978)
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The search for disks aroung massive
protostars Is now a very active topic of
research

e Let’s look at some possible examples.



Chini et al. (2004)

report at 2.2 microns a
silhouette of a possible
accretion disk in M17.
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The proposed disk has
a diameter of 20,000
AU, much larger than
disks around solar-
type young stars.
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Emission at center IS
taken to trace central,
massive star.

NAOS-CONICA at
VLT

RA offset (arcsec)




Offsets (arcsec)

Velocity gradient in 13CO implies total mass of 15 solar masses,
assuming Keplerian rotation.

IRAM interferometer



However, Jiang et al. (2005) obtained Bry and 12.8 um images
where the central compact object seen in H and K’ Is not
seen.They interpret these results to imply that the central star
IS less massive than 8 solar masses and thus an intermediate-
mass young star and not a true high mass star.

Subaru 8.2 m data with adative optics cameras.



Disk associated with the BN object in
Orion (Jiang et al. 2005)

H = 1.65 micras

Images taken with Subaru’s
Polarimetric Camera with
adaptive optics and an anular
resolution of 0.1 arcsec

K = 2.2 micras




Just radiation scattering form dust
grains

Monte Carlo models of the near-
Infrared emission

Scattering from dust grains plus
dichroic extinction (assuming dust
grains are elongated and abosrb more
In one polarization direction




Thelr conclusions:

 The BN object is known to have a mass
between 7 and 20 solar masses.

* The proposed disk would have a radius of
800 AU



Some concerns:

 No kinematic information

e Even when the region has been observed in
several molecular lines, there is no detection
(all you see iIs a compact HII region)

* No evidence of an outflow In the expected
angle

BN Is a runaway object (more on this later)



RA offset (*

One of the best cases Is
Cep A HW?2 (Patel et al.
2005)

Dust and molecular
emissions perpendicular
to bipolar jet.

Radius of disk = 330 AU
Mass of disk = 1-8 Mg\

Mass of star = 15 Mg\

SMA and VLA data



0
Velocity, V| g5 (km s7)

Position-velocity map across major axis of disk implies M =19 +-5 Mg






» Are there other less massive stars embedded
In the disk?

* Up to now, the cases are associated with B
type stars. Is there any case associated with
a more luminous, O-type protostar?
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IRAS 16457-4742

At a distance of 2.9
Kpc, It has a
bolometric

luminosity of 62,000
solar luminosities,

equivalent to an O8
ZAMS star.
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IRAS16547—4247

16758008

Right Ascension (J2000)

Garay et al. (2003)
found millimeter
continuum emission
(dust) and a triple
source In the
centimeter range.

Core has 1,000 solar
masses.

Data from SEST
(mm) and ATCA
(cm)




Australia Telescope Compact Array
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VLA images of IRAS 16547-4247
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Las componentes de la
fuente triple muestran
indices espectrales que
sugieren se trata de un
chorro asociado con
una estrella joven
masiva.
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The outflow
carries about 100
solar masses of
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ambient cloud)
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14.9 GHz

55| VLA data at 2 cm

WN* The central source Is resolved
as an elongated object

5200 —

05—

In particular, the position angle
sl of 165 +- 2 degrees aligns well
with the lobes.
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We observe a dependence of
angular size with frequency
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@—s- outflows.
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14.9 GHz
However, the axis of the jet
misses the lobes.

We are investigating this
problem (common in triple
sources of this type).
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8.46 GHz

The VLA image at 3.6 cm Is very
sensitive and shows structure
connecting the central source with
the northern lobe, as well as other
sources in the field (possibly other
young stars)
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OK, so we have a Jet

« \What about infalling gas and in particular, a
disk?



MG Bl Some of the line
il emission from
single dish (20)
observations
show profiles
characteristic of

HCo (4-3)
A3TE

large scale infall.
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H*co(4—3)-
APEX -

You need much
larger angular
resolution to
detect a disk.
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Velocity gradient
In SO2 (colors)
suggests total mass
of 20 to 40 solar
masses and a
radius of 1,000 AU
for the disk.

Most massive
young star with
jets, disk, and large
scale Infall.
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Do we need merging?

» Evidence for collimated outflows from
massive young stars is relatively firm.
Collimated outflows not expected after
merging.

» Evidence for disks Is scarce, but is being
searched for vigorously. Some good cases.

 There Is, however, the case of Orion
BN/KL.



In the Orion
BN/KL region
there 1s an
example of a
powerful,
uncollimated
outflow. At Its
center there are
several young
SOurces.

H2 image with NH3
contours (Shuping
et al. 2004; Wilson
et al. 2000)



The BN object, a “moving” UCHII region...
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In a recent analysis of the

data, Tan (2004) proposed
that the BN object was
ejected some 4,000 years
ago by interactions in a
multiple system located at
01C Ori, the brightest star
of the Orion Trapezium.
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However, an analysis of VLA data taken over the last two decades suggests
that the radio source | (apparently a thermal jet), is also moving in the sky,
receding from a point between it and the BN object.
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S The data suggest
~ | that some 500 years
4 ago, a multiple stellar

system, formed at
least by BN and | had
a close encounter
and the stars were
expeled in
antiparallel directions

BN or | have to be
close binary systems
for this scenario to
work



INTERPLAY

) N

CLOSE TRIPLE APPROACH

EJECTION

Encounters in multiple stellar systems can lead
to the formation of close binaries or even
mergers with eruptive outflows (Bally &
Zinnecker 2005).

Reipurth (2000)



Indeed, around the BN/KL
region there is the well known
outflow with an age of about
1000 years.

It is possible that the outflow
and the ejection of BN and |
were result of the same
phenomenon.

Energy in outflow is of order
4X1047 ergs, perhaps produced
by formation of close binary or
merger.



Still many open questions In
massive star formation...

o Are disks and jets always present?

« Accretion seems needed given collimated
outflows

« Are mergers playing a role?
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