Observations of the Cosmic Microwave Background Radiation

CBI Project Ricardo Bustos – U. de Concepción

Cosmic Background Imager

				altitude: 508	30 m	
Caltech:	NRAO:	CITA:	U. Concepción:	U. Chile:	Chicago:	San Pedro:

Dickinson Mason Pearson Myers Readhead (principal investigator) Shepherd

Pospieszalski Pen

CITA: Bond Contaldi Pogosyan Prunet Sievers

U. Concepción:

Achermann Altamirano Bronfman Casassus May

Chicago:

Carlstrom

Cartwright

Kovac

Leitch

Padin

Pryke

San Pedro:

Araya Cortés Cruz Nail Oyarce Uehara

Berkeley:

Halverson Holzapfel

Bustos

Reeves

Torres

MSFC: Joy

Location of CBI in northern Chile. Extremely low level of water vapor in the atmosphere.

Llano de Chajnantor

Licancabur

Laguna Verde

San Pedro de Atacama Cordillera de la Sal Chajnantor Scientific Preserve Area: CONICYT

> Salar de Atacama

> > 10km

Location of the Compact Configuration of ALMA

CBI Interferometer

- Array of 13 Radio Telescopes
- 0.9 m diameter of each antenna
- Detect signals between 26 36 GHz
- 10 Channels of 1 GHz.
- Designed to observe and to image the Cosmic Microwave Background Radiation (CMBR)
- Located in llano de Chajnantor, Chile at 5080 meters in the Andes.
- Operates since late 1999
- Reconfigured to detect polarization of CMBR from September 2002.

Number of baselines

 $N = n \cdot (n-1)/2$

N : total baselines n : number of antennas

If n = 13, then N = 78 different baselines !

d: baseline length is sensitive to multipoles $l \sim 2\pi d/\lambda$

CBI measures the spectrum between 300 < l < 3500 at this configuration

... adding 10 channels per baseline, then CBI has 780 interferometers !

CBI Antenna ConfigurationsOpen (Total intensity)Compact (P

2000-2001

Compact (Polarization) 2002-2004

Longer baselines Higher angular resolution

Shorter baselines Lower angular resolution

Polarization upgrade done from February to September 2002

CMBR fluctuations. COBE and WMAP 2.725 K +/- ~ 30 µK rms, beam 7°

COBE

WMAP

Intrinsic fields

Synchrotron map Ka band from WMAP

Extended Mosaic Observations

with the CBI

Fig. 1.— The extended mosaic images from the combined 2000+2001 observations. The angular resolution of these observations is $\sim 5'$ (FWHM).

Extended intrinsic fields observed by CBI in 2000-2001. 02^{h} , 08^{h} , 14^{h} , 20^{h} fields. Angular resolution of ~ 5 arcmin, covering ~ 90 deg² in the sky.

Power Spectrum.

Standard Cosmological model, WMAP, and CBI 2000+2001.

Power Spectrum

Combining with high-*l* results from BIMA and ACBAR, we detect power in excess of that expected from primary anisotropy at 98% confidence.

Cosmological Parameters obtained from Total Intensity observations 2000+2001

Parameter	WMAP only	CBI + WMAP	CBI + ALL
$\Omega_b h^2$	$0.0243^{+0.0016}_{-0.0016}$	$0.0232^{+0.0012}_{-0.0012}$	$0.0228^{+0.0009}_{-0.0010}$
$\Omega_c h^2$	$0.123^{+0.017}_{-0.018}$	$0.113^{+0.014}_{-0.014}$	$0.118^{+0.010}_{-0.010}$
Ω_{Λ}	$0.71^{+0.08}_{-0.08}$	$0.74_{-0.06}^{+0.06}$	$0.71^{+0.05}_{-0.05}$
$ au_C$	$0.184_{-0.057}^{+0.031}$	$0.152_{-0.041}^{+0.023}$	$0.117\substack{+0.019\\-0.033}$
n_s	$1.01^{+0.05}_{-0.05}$	$0.98^{+0.03}_{-0.03}$	$0.96^{+0.02}_{-0.02}$
$10^{10} A_{S}$	$27.7^{+5.5}_{-5.1}$	$24.2^{+3.5}_{-3.5}$	$22.9^{+2.4}_{-2.5}$
H_0	$72.1_{-5.8}^{+6.4}$	$72.9^{+5.2}_{-5.1}$	$70.5_{-3.9}^{+\overline{3.7}}$
Age (Gyr)	$13.3_{-0.3}^{+0.3}$	$13.5_{-0.2}^{+0.3}$	$13.6_{-0.2}^{+0.2}$
Ω_m	$0.29_{-0.08}^{+0.08}$	$0.26_{-0.06}^{+0.06}$	$0.29_{-0.05}^{+0.05}$

Polarization of CMB

At $z \sim 1100$, the photon-baryon plasma decoupled and allowed photons to stream freely. Surface of last scattering.

CMB polarization is generated by Thomson scattering.

Intensity of polarized emission are expressed by 4 Stokes parameters *I*, *Q*, *U*, and *V*. We ignore *V*.

From *I*, *Q*, and *U*, we can generate *TT*, *EE*, *BB*, *TE*, *TB*, and *EB* power spectra. *T*: Total Intensity, *E*: Grad, *B*: Curl components of linear polarization. *E* is the component 0° or 90° from the wave vector (or interferometer baseline), *B* is $\pm 45^{\circ}$.

Density perturbations generate E only. B can be generated by tensor perturbations or by gravitational lensing of E.

Polarization of CMB

In inflation models, *B*-modes should be much weaker than *E*-modes. Confirmation that *BB* is much smaller than *EE* is a very important check of the model.

The dominant source of the E mode is caused by velocity effects in the acoustic waves at the surface of last scattering, introducing a shift of one-half cycle in phase between the maxima in the TTand EE spectra.

Each CBI receiver is sensitive to right (*R*) or left (*L*) circular polarization. Co-polar baselines *RR* or *LL* are sensitive to Stokes $I \pm V \approx I$. Cross-polar *RL* or *LR* are sensitive to linear polarization, Stokes $Q \pm iU$.

Polarization spectrum is no more than 10% than total intensity.

14^{h} field image: *I*, *Q*, and *U*.

CBI p14 mosaic CBI 31 GHz I 2003-04-04

CBI 31 GHz Q 2003-04-04

CBI 31 GHz U 2003-04-04

-0.02

-0.01

0.01

0.02

0.03

-0.03

-0.04

JY/BEAM

0.04 0.05

Ground pickup removed

CMB Polarization Angular Spectrum CBI Observations 2002-2004

Comparison of EE measurements from CBI, DASI, and CAPMAP

Cosmological Parameters obtained from Polarization observations 2002+2004								
	WMAP1	CBIpol+WMAP1	CBIpol+CBIext+WMAP1					
		. 0. 0010						
$\Omega_b h^2$	$0.0243^{+0.0019}_{-0.0017}$	$0.0240^{+0.0018}_{-0.0016}$	$0.0233^{+0.0013}_{-0.0013}$					
$\Omega_c h^2$	$0.119_{-0.016}^{+0.016}$	$0.113^{+0.014}_{-0.015}$	$0.109^{+0.012}_{-0.013}$					
θ	$1.049^{+0.007}_{-0.008}$	$1.048\substack{+0.006\\-0.006}$	$1.044\substack{+0.005\\-0.005}$					
$ au_c$	$0.188\substack{+0.037\\-0.065}$	$0.190\substack{+0.044\\-0.067}$	$0.164\substack{+0.027\\-0.053}$					
n_s	$1.01\substack{+0.06 \\ -0.05}$	$1.00\substack{+0.06\\-0.05}$	$0.98^{+0.04}_{-0.04}$					
$\log[10^{10}A_S]$	$3.3^{+0.2}_{-0.2}$	$3.3^{+0.2}_{-0.2}$	$3.2^{+0.2}_{-0.2}$					
Ω_{Λ}	$0.72_{-0.07}^{+0.08}$	$0.74_{-0.07}^{+0.07}$	$0.75_{-0.06}^{+0.06}$					
Age (Gyr)	$13.3^{+0.4}_{-0.4}$	$13.4^{+0.3}_{-0.4}$	$13.5^{+0.3}_{-0.3}$					
Ω_m	$0.28_{-0.08}^{+0.07}$	$0.26_{-0.07}^{+0.07}$	$0.25_{-0.06}^{+0.06}$					
σ_8	$0.94_{-0.13}^{+0.13}$	$0.91_{-0.10}^{+0.10}$	$0.85_{-0.08}^{+0.08}$					
z_{re}	$17.5_{-6.2}^{+6.7}$	$17.5_{-6.2}^{+6.7}$	$16.0^{+6.0}_{-5.5}$					
H_0	$73.3_{-6.4}^{+7.1}$	$74.5_{-6.5}^{+7.7}$	$74.2_{-5.5}^{+6.1}$					

Conclusions – Total Intensity

Two years of CMBR observations with the CBI have been combined to give a sensitive, high-resolution angular power spectrum over the range 400 < 1 < 3500.

CBI 2000+2001 observations combined with *WMAP* gives the most precise cosmological parameters ever published.

These results are consistent with the key predictions of structure formation and inflationary theories.

A marginal detection of a running of the scalar spectral index.

Detection of an excess of power of that expected from primary anisotropy at $\ell > 2000$ with a 98 % confidence.

Conclusions – Polarization

High significant detection of the *E*-mode polarization. First to detect and measure the 2^{nd} and 3^{rd} peaks in the *EE* spectrum.

Determined a *TT-EE* phase-shift of π , as expected if acoustic waves are the origin of the features in the *TT* and *EE* spectra.

Powerful confirmation of the standard model of cosmology:

- Dark energy (~75%) and non-baryonic "cold dark matter"
 (~20%) are the dominant constituents of the Universe.
 - ~5% are conventional "baryonic" matter.
- Geometry is close to flat (Euclidean).
- Primordial density fluctuations are predominantly adiabatic.

We expect by the end of 2005 to have more than doubled the data set, decreasing by a factor of 2 the uncertainties of C_l .

Science Target: CMB Polarization B-modes

http://www.astro.caltech.edu/~tjp/CBI/

