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ABSTRACT

In this paper we test the astrometric precision of VLT/FORS2 observations using a series of CCD frames taken in the Galactic bulge area.
A special reduction method based on symmetrization of reference fields was used to reduce the atmospheric image motion. The positional
precision of unsaturated R = 16 mag star images at a 17 s exposure and 0.55′′ seeing was found to be equal to 300 µas. The total error of
observations was decomposed into components. It was shown that astrometric error depends mainly on the photon centroiding error of the
target (250 µas for 16 mag stars), while the image motion was much less (110 µas). At galactic latitudes to about 20◦, precision for a series
of frames with a 10 min total exposure was estimated to be 30–50 µas for 14–16 mag stars, providing the images were not overexposed and
the filter Rspecial was used. Error estimates for fields with smaller sky star density are given. We conclude that astrometric observations with
large telescopes, under optimal reduction, are never atmospheric limited. The bias caused by differential chromatic refraction and the residual
chromatism of LADC are considered and expressions that are valid for correcting color effects in the measured positions are given.
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1. Introduction

The studies of exoplanets and microlensing effects are usually
restricted to measuring two physical quantities: radial veloci-
ties and/or brightness of stars. Angular measurements are rarely
considered due to their poor precision. The extraction of many
parameters related to the studied object from a single physical
quantity, however, is not always possible or even reliable, so
that the radial velocity data only allows us to find the low limit
of planet mass. The additional information on the star angular
displacements essentially improves the accuracy of determin-
ing exoplanet mass and orbital parameters (Pravdo & Shaklan
1996; Benedict et al. 2002). These data are also useful for mi-
crolensing studies of massive compact objects in the galaxy
because they enables us to measure lens mass, its distance, and
velocity (e.g. Boden et al. 1998). Safizadeh et al. (1999) argue
that a combined use of photometric microlensing and astromet-
ric measurements allows the detection of low mass planets and
determination of their masses and semi-major axes.

To be useful, the astrometric measurements need to be an
accurate for these purposes, at least on the order of 10 to
100 µas. The long history of ground-based observations shows,
however, that the actual accuracy is in fact much lower, about
1 mas per a night for a 10–20′ reference frame (Gatewood
1987) and 1 mas/h for a 1′ double-star separation measure-
ment (Han 1989). The best 150 µas/h precision was achieved
by Pravdo & Shaklan (1996) in a special series of observations
at the 5-m Palomar telescope. A major factor limiting accu-
racy is the image motion caused by atmospheric turbulence and

displayed as a random relative change of star-image positions
in unpredicted directions and at an uncertain angle. Therefore
development of ultra high-precision astrometric methods of ob-
servations from the ground is normally related to infrared in-
terferometers that have 10 µas expected precision (e.g. Frink
et al. 2004). A similar accuracy, at acceptable exposure times,
was found to be unattainable for filled one-aperture telescopes
due to atmospheric image motion (Lindegren 1980).

This conclusion was revised in our previous work
(Lazorenko & Lazorenko 2004, hereafter Paper I) where we
considered the image motion as a turbulent light phase-related
quantity dependent on initial wave-front fluctuations at the
telescope entrance pupil, on the process of differential mea-
surements, and on the way these phase fluctuations affect the
measured positions. In the spectral domain, transformation
of the phase fluctuations into image motion is described by
four filters of non-atmospheric origin that correspond to:
1) conversion from the phase to the wave-front gradient;
2) averaging over the entrance pupil; 3) averaging due to a
finite exposure; and 4) formation of function differences in
the directions to reference stars. Favoring the inhibition of
the atmospheric image motion spectrum is the circumstance
that a filter Y(q) corresponding to the averaging over the
entrance pupil is a low-pass filter that is transparent to about
q ∼ 2/D spatial frequency (D is the telescope diameter),
while reference field stars form a high-pass filter Q(q). The
filter bands are only partially overlapping by their rising
(for Q(q)) and descending (for Y(q)) branches. The shape
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of these instrumental functions can be adjusted so as to
minimize the combined system response Y(q)Q(q).
Improvement of the Y(q) filter shape is achieved by apodiza-
tion or by applying a special covering with a variable light
transmission to the entrance pupil. This measure results in
a fast attenuation of the filter transmission at q > 2/D. The
function Q(q) shape is adjusted at the reduction phase by
setting special weights to each reference star, which virtually
reconfigures the reference field into a highly symmetric star
group and suppresses Q(q) response at low frequencies.

The attenuation factor of the system with modified filters
Y(q) and Q(q) depends on the telescope diameter, angular ref-
erence field radius R, and the turbulent layer height h, and be-
ing a power function of the Rh/D ratio, is especially large for
narrow-field mode of observations when Rh � D. For that rea-
son, the method is recommended for future large 30–100 m
telescopes, although the expected precision is also high for ex-
isting 8–10 m instruments. Based on theoretical assumptions,
we showed that for 10-m telescopes precision of differential
referencing to the background stars is, depending on the bright-
ness and number of reference stars, from 10 to 60 µas at 10 min
exposure.

In the current study we test the effeciency of this astromet-
ric method application to actual observations at the VLT and in
the presence of numerous noise sources, such as atmospheric
image motion, photon noise in the images of stars, pixelization,
complex shape of PSF, background noise, optical aberrations,
active optics performance, etc. In Sect. 6 we discuss another
atmospheric effect known as differential chromatic refraction
(DCR), which causes a relative displacement of star images of
different colors (Pravdo & Shaklan 1996; Monet et al. 1992;
Louarn et al. 2000). At the VLT, the DCR effect is strongly re-
duced by use of a special longitudial atmospheric dispersion
compensator (LADC) that mimics atmospheric refraction but
introduces it in the opposite direction (Avila et al. 1997).

2. Observational data and computation
of centroids

For the test study we used a 4-hour series of FORS2 frames
obtained by Moutou et al. (2004) when observing OGLE-TR-
132b object with the filter Rspecial at 17 s average exposure and
a good FWHM = 0.55′′ seeing. The HR mode with 2 × 2 pixel
binning and 0.125′′ pixel size was used. Only the master chip of
CCD with a field of view of 3.9×2.1′ containing about 400 stars
brighter than 20 mag was considered, and only well-exposed
stars fainter than 16 mag(R) were measured. Four frames ob-
tained with a V filter provided color information that was then
used for examination of chromatic effects (Sect. 6).

A full profile fitting was used for computation of x̄, ȳ coor-
dinates of stellar centroids. The shape of the PSF was fitted by
a 12 parameter model of a sum of three elliptic Gaussians with
a common x̄, ȳ center:

PSF(x, y) = IG(x, y) + (x − x̄)2I′G′(x, y)

+(y − ȳ)2I′′G′′(x, y) (1)

where x, y are pixel coordinates. The main Gaussian G with
5 free parameters (x̄, ȳ, Gaussian width parameters σ0x, σ0y, a

term α0 specifying orientation of semi-axes) and a flux I (sixth
parameter) contains about 98–99% of the total star flux; two
auxiliary Gaussians G′ and G′′ with fluxes I′ and I′′ are ori-
ented along x, y axes. As model parameters, they both include
x̄, ȳ, two width termsσ1x, σ1y for G′ and similar σ2x, σ2y terms
for G′′. Note that since image motion affects photocenter posi-
tions, it is useful to treat x̄, ȳ in Eq. (1) not as the “fitting model
center” but as the weighted photocenter defined by equations∫ ∫

(x−x̄)PSF(x, y) dx dy =
∫ ∫

(y−ȳ)PSF(x, y) dx dy = 0. This
interpretation emphasizes the necessity of using the PSF mod-
els, with first derivates on model parameters (except x̄, ȳ) being
symmetric functions of coordinates x, y. In this case small er-
rors in the parameter determination induce a symmetric bias of
the PSF shape that does not affect computation of x̄, ȳ. For that
reason, the model (1) does not contain odd coordinate powers.

Transition from the continuous expression for the number
of electrons (1) to the discrete pixel counts requires numeri-
cal integration of PSF(x, y) within the pixel limits. To avoid
this procedure, we used analytical approximation of the inte-
gral precise to 10−4.

The solution of Eq. (1) was obtained in square 10 ×
10 px windows that contained the main light signal and are
small enough to minimize overlapping of nearby images.
Approximation of the actual PSF shape by the model (1) is
typically accurate to 5−10%, while the photon noise statistics
differs essentially from the Poissonian. Deviations in the ac-
tual PSF shape from the model have a specific wavelike pattern
that is highly correlated for all stars’ images of a certain frame
(especially at short spatial scales) but completely changes at
the next frame. At a high level of a light signal (bright images,
central pixels), these deviations strongly exceed random pho-
ton noise.

Using an initial fitting for each star, we averaged the “mea-
sured PSF–model” residuals over all star images in a frame
to find the systematic part of these residuals as a function
varPSF(x − x̄, y − ȳ). To obtain this function estimates at sub-
pixel level, it was approximated by a set of 2D cubic polinomi-
als defined in 3×3 pixel areas with centers displaced at 1 pixel.
The function varPSF(x − x̄, y − ȳ) was then subtracted from
individual star images and a final profile fitting applied. This
slightly improved the precision of the centroiding. One can see
that the measured PSFs usually show variations at spatial scales
of some hundreds of pixels. Therefore it seems reasonable to
obtain more precise varPSF(x − x̄, y − ȳ) function shapes by
performing averaging of the “measured PSF–model” residuals
only in the limited areas of a frame. Although leading to much
better fitting of PSFs, this consideration is incorrect with regard
to determining the photocenters because application of variable
image shape corrections dependent on position of a star in the
frame induces a space-variable bias in the weighted center po-
sitions.

An attempt to assign weights to pixels depending on these
residual values also failed, although the quality of PSF approxi-
mation according to χ2 criterion improved. This criterion seems
to be improper for precise centroiding works since the actual
centroiding precision is near the photon limit (Sect. 4) despite
of low χ2 ∼ 10 fitting quality for bright stars.
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To estimate the centroiding precision for images with PSFs
of a complex shape (1), we created random images adding
Poisson noise to the model function. At the 340 e−/px sky level
typical of FORS2, the results are represented by the expression

ε =
FWHM

2.26
√

I

(
1 + 475I−0.7

)
. (2)

Here FWHM refers to the x or y axis and I is given in elec-
trons. Note that Eq. (2) is valid for random photon fluctuations
only and does not take the real photon statistics in central pix-
els into account. It was found (Sect. 4.1) that for bright images
a limit (2) is not achievable.

3. Reduction model

Astrometric reductions are based on the theoretical consider-
ations in Paper I whose main results are reproduced here in a
concise form.

The variance σ2
at of differential atmospheric image dis-

placements caused by a thin turbulent layer can be found by
integration of the power spectrum of image motion which, as
mentioned in the Introduction, contains filter functions Y(q)
and Q(q). Therefore, using Eq. (12) from Paper I, we obtain

σ2
at =

J(h)
VT

∫ ∞
0

Y(q)

⎡⎢⎢⎢⎢⎢⎣
∞∑

m=1

q2mF2m(xi, yi)

⎤⎥⎥⎥⎥⎥⎦ q−5/3 dq (3)

where T is the exposure, V the velocity of the turbulent layer,
and J(h) a function proportional to the intensity of turbulence in
the layer and its thickness. The integration is performed in the
area of a 2D spatial frequency q related to the turbulent layer
plane. Cartesian star coordinates xi, yi, not distorted by the at-
mosphere, refer to the same plane. The subintegral component
in square brackets represents the Q(q) function and describes
the filtration caused by the reference star field. In its original
form (Eq. (25) of Paper I), it is written as a linear combination
of Bessel zero-order functions dependent on the star-coordinate
differences. Note that the Q(q) component is expanded into q2m

powers with coefficients F2m, which are functions of 2m order
cross-moments of star coordinates xi, yi differences measured
with reference to the target. The amplitude of the q2mF2m com-
ponents rapidly decreases with m. The Y(q) function describes
the filtration of the original image motion spectrum by the tele-
scope entrance pupil, which can be apodized for better inhibi-
tion of high-frequency spectral components; for a filled pupil,
an expression for Y(q) is given by Eq. (13) of Paper I.

It is easy to formulate the conditions at which the princi-
pal component F2 and possibly some subsequent F2m functions
turn to zero at the reduction stage. For that purpose, it is neces-
sary to define the target position with reference to N field stars
by the quantity (Eq. (19) of Paper I)

W = N−1
∑
i=1

ai(x̄0 − x̄i) = x̄0 − N−1
∑
i=1

ai x̄i (4)

for the x-axis and by a similar quantity for the y-axis. Here x̄i,
ȳi are the measured (image motion included) Cartesian coordi-
nates of reference stars i = 1, 2 . . .N; index i = 0 refers to the

target. Weights −∞ < ai < ∞ are determined from conditions

∑
ai(xi − x0)α(yi − y0)β = 0, α + β = 1 . . .

k
2
− 1,∑

ai = N,
∑

a2
i ε

2
i = min (5)

where α and β are non-negative integers, and εi is the centroid-
ing accuracy for ith star. The first equation in (5) formally de-
scribes a system of points with zero-weighted cross-moments
of the k/2 − 1 order and the symmetry center at x0, y0. The
even parameter k = 2, 4 . . . is therefore called the reference
field symmetry order and is related to the power of the first
qkFk non-zero component of Eq. (3). The last condition in (5)
is useful for minimizing the reference field centroid errors that
affect the accuracy of W positions. The system (5) is solved
when at least Nmin = k(k + 2)/8 reference stars are available.

In the simplest case of k = 2, the first condition of the
system (5) is not used and weights are found from equations∑

ai = N,
∑

a2
i ε

2
i = min. This refers, for example, to the dou-

ble star (N = 1) separation Wx = (x̄0 − x̄1) measurements or
to the average of individual separations Wx = N−1∑(x̄0 − x̄1),
if N > 1 reference stars of equal brightness are available. The
field is not symmetrized, and the σ2

at value is maximum since
the largest q2F2 term in Eq. (3) is not eliminated.

The first k = 4 symmetrized solution is obtained by apply-
ing conditions

∑
ai(xi−x0) =

∑
(yi−y0) = 0. In particular, these

conditions refer to the continuous distribution of reference stars
in a circular field that, as shown by Lindegren (1980), yields a
strong inhibition of the image motion. The same k = 4 symme-
try order with elimination of the q2F2 term can be implemented
with use of only 3 arbitrary placed stars. The principal term in
Eq. (3) is proportional to q4F4.

The highest k = 12 order implementation used in this study
requires at least Nmin = 21 reference stars to apply conditions∑

ai(xi− x0) =
∑

ai(yi−y0) =
∑

ai(xi− x0)2 =
∑

ai(xi− x0)(yi−
y0) = . . . =

∑
ai(xi − x0)(yi − y0)4 =

∑
ai(yi − y0)5 = 0. This

results in elimination of F2, F4, F6, F8, and F10 terms, thus
Q(q) is proportional to q12F12.

In proper motion works, the displacement µx of the target
star is found as a difference of W(Ep2) − W(Ep1) at epochs
Ep2 and Ep1. Weights ai are determined from conditions (5)
in which the measured positions at Ep1 (standard frame) are
used as unknown true coordinates xi = x̄i(Ep1), yi = ȳi(Ep1).
This substitution, as seen from Eqs. (5), leads to the identity
W(Ep1) = 0 that defines a conditional zero-point of W values.
Positions W(Ep1) also define a zero-point of proper motions
which are computed as

µx = W(Ep2) =
1
N

∑
ai(x̄0 − x̄i)

= x̄0 − x0 +
1
N

∑
ai(xi − x̄i). (6)

Symmetrization of reference fields not only suppresses atmo-
spheric image motion, but also reduces geometrical field dis-
tortions, in this respect being equivalent to the usual reduction
models. Let us consider astrometric reduction model based on
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a polynomial expansion

x̄i − xi = A0 + A1,0
1 (xi − x0) + A0,1

1 (yi − y0) + . . .

= A0 +

k/2−1∑
m=1

m∑
α,β=0,
α+β=m

Aα,βm (xi − x0)α(yi − y0)β (7)

of measured x̄i, ȳi coordinates at Ep2 over cross-moments of
the coordinate differences xi − x0, yi − y0 at Ep1 of a standard
frame, where the index i = 0 again refers to the target. The
equation for y has a similar structure. A residual of conditional
equations at i = 0 is treated as a proper motion

µx = x̄0(Ep2) − x0(Ep1) − A0. (8)

Note that all coefficients Aα,βm with m > 0 have vanished since
Eqs. (7) are written for a chosen i = 0 star. This result is com-
pletely equivalent to Eq. (6) since, multiplying Eq. (7) by ai

and then summing up over i, in view of conditions (5) we find
that A0 = N−1∑ ai(x̄i − xi). Thus, symmetrization allows both
reduction of the image motion and exclusion of all geometric
distortions (their change between Ep1 and Ep2) up to and in-
cluding the polynomial degree of α + β = k/2 − 1. In contrast,
if the reduction model (7) includes all modes m ≤ k/2 − 1
with no omissions, the least squares solution of systems (7)
and ((4)−(5)) are equivalent. It means that, though the use of
model (7) is aimed at correcting geometric distortions, it re-
duces the image motion equally well. For example, a 6 param-
eter linear model normally used in proper motion studies (e.g.
Pravdo & Shaklan 1996) in fact performs the k = 4 order sym-
metrization.

4. Differential positions

A one-hour series of j = 1, 2 . . .72 frames obtained near the
meridian was used for a detailed analysis. A frame j = 1 ob-
tained near the meridian was chosen as the standard “epoch 1”
frame. In this frame, assuming some star as a target i = 0 and
using Eqs. (5), we computed a set of weights ai with which the
target star positions W j at each other j frame (“epoch 2”) were
calculated. Computations were performed at k = 2, 4...12 and
at reference field radii R from 0.2′ to 1.1′, whereupon the whole
procedure was repeated, considering in turn each other star as
a target. Since the actual image motion for so short a time is
zero, the displacements computed, of course, represent errors
of Wx, Wy determination. Because a noticeable part of these
errors is caused by centroiding errors of reference stars, we
performed iterative refinement of positions x̄i, ȳi. For this pur-
pose we calculated the preliminary Wx, Wy values with k = 6
and near optimal R = 0.6′. These displacements taken with
reference to their average 〈Wx〉, 〈Wy〉 over the whole series of
j = 1, 2 . . .72 frames were treated as centroiding errors and
therefore subtracted from the x̄i, ȳi coordinates of the corre-
sponding ith star. While reducing random errors of reference-
star positions, these iterations introduce an extra atmospheric
dependent and spatially-correlated bias. For this reason only a
small improvement in the final precision was obtained and only
at the first iteration; no improvement was found for k = 2 at all.

Fig. 1. Astrometric deviations Wj − 〈W〉 of each frame’s star position
Wj from its average position 〈W〉 as a function of instrumental mag-
nitude; plots correspond to a 0.8′ reference field radius and reduction
parameters k = 4 and k = 12.

4.1. Astrometric error components

Figure 1 represents astrometric errors as residuals W j − 〈W〉
of each frame’s star position W j from its average 〈W〉 over all
72 frames. The distribution of residuals computed with R =
0.8′, k = 4, and k = 12 is seen to be symmetric and dependent
on the star brightness, which is especially contrasted at k = 12.
Errors of Wy are slightly larger due to the image elongation
along the y-axis. Note the difference of point scatter at k = 4
and k = 12, which were obtained with use of identical sets of
reference stars.

The measured variance ∆2
k of each star position com-

puted with application of some k order was found as ∆2
k =

(W j − 〈W〉)2. Also ∆k defines a precision of W value zero-
points, which are set so that W(Ep1) = 0. The W(Ep1) values
are thus shifted randomly from 〈W〉 by about ∆k rms.

The estimates of ∆2
k plotted as a function of R show a large

scatter of points (Fig. 2a); however, a clear dependence on k,
R, and, of course, on the star brightness (the plot is built for
16.5 mag star) is seen. To model this dependence, we decom-
posed the ∆2

k value as a sum

∆2
k = σ

2
at +C2σ2

rf + η
2ε2

0 (9)

of atmospheric component (3) that at large number of refer-
ence stars is approximated by the expression (Eqs. (36)−(38)
of Paper I)

σat = Bk(R/1′)bk (10)

with parameters Bk and bk dependent on k and considered here
as free model parameters; the centroiding noise of the reference
field

σrf = N−1
√∑

a2
i ε

2
i (11)

where εi is given by Eq. (2), and the third component ηε0 which
represents the centroid precision for the target star. Coefficient
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Fig. 2. Dependence of the total astrometric error and its components
on R at k = 2, 4...12. a) The total error ∆2

k of 16.5 mag star observation:
measured point estimates (dots) and approximation (9) (lines); errors
in double-star separation measurements are shown with a shift: a real
curve is a factor 2 upward. b) Reference field components: σrf (dashed
lines with different symbols) and σat (solid lines); large cicles mark
points of line intersections at optimal radii Ropt. c) The cumulative
reference field contribution ∆a+r. All plots refer to right ascension.

C < 1 is introduced to reflect the decrease in σrf component
produced by the iterative refinement of star positions, and η ≥ 1
is the ratio of the true centroid error to its photon-limited es-
timate (2); it was treated as a free model parameter for each
0.5 mag bin of magnitudes. The solution of Eq. (9) produced
Bk and bk values, C ≈ 0.7, η ≈ 1 for stars fainter than 17 mag
and, due to PSF profile imperfection, η2 ≈ 1.2−1.3 for brighter
images.

Figure 2b shows dependence of components Cσrf (units:
0.001 px = 1 millipixel, hereafter mpx; 1 mpx = 125 µas
(microarcsec)) and σat on R at each parameter k value. The
observed dependencies qualitatively match theoretic behavior
of the plots shown in Fig. 15 of Paper I and corresponding to
D = 10 m and T = 10 min. At narrow fields, the dominant

Table 1. Parameters Bk [µas] and bk calculated for X and Y and scaled
from Fig. 15 of Paper I.

Bk bk Bk bk Bk bk

k Computed in X Computed in Y From Paper I
2 1380 0.9 1260 0.8 1190 0.64
4 780 1.0 1010 1.0 806 1.69
6 340 1.3 420 1.2 186 1.63
8 310 1.2 370 1.1 161 1.83

10 180 1.8 230 1.4 84 1.66
12 160 1.9 200 1.6 76 1.84

component isσrf , which decreases with R following an approx-
imate dependence (Paper I)

σrf =
FWHM

2.36R
√
πn

k
4
, (12)

where n is the total light from a 1×1′ reference field, R is given
in minutes of an arc, k/2 is supposedly even, and star number
N  Nmin. For small N � 3−5Nmin, the actual values (11) of
σrf are systematically a factor 1.5–2 above the estimate (12).
At still lower N, the curves for σat are not built. At R � 1′ the
value of σat considerably exceeds σrf .

A twinning of curves in Fig. 2 related to pairs k = (2, 4),
(6, 8), and (10, 12) is a specific feature of densely populated
fields since a high sky star density favors reduction due to the
field averaging effects. At k that is not a multiple of 4, the values
of σat and σrf are therefore close to approximate estimates (10)
and (12) computed with k + 2. Just for illustration of the field
averaging effect, Fig. 2a reproduces the dependency of astro-
metric error for measurements of x̄0− x̄i separating two stars of
approximately equal brightness. The dependence observed im-
plies that to obtain good astrometric precision, a separation R
between two stars should be less than 0.1′; at larger R the ac-
curacy degrades very rapidly. This is an example of a marginal
single-star reference field, but note that Wx positions (4) are
composed of x̄0 − x̄i unit differences averaged over the field.

Table 1 compares the current parameter Bk and bk estimates
for VLT and their expectations for Chilean observatories (Cerro
Tololo, Paranal, and San Pedro Martir) at typical atmospheric
conditions. This data was found by scaling plots from Fig. 15
of Paper I, given for a D = 10 m and T = 10 min, to the cur-
rent values using a relation B2

k ∼ (airmass) × T−1D−3 (Eq. (37)
of Paper I). Results given in the last column of Table 1 gener-
ally agree with observed values except some differences com-
mented on below. By definition (10), coefficient Bk is equal to
σat at R = 1′. Its measured value is approximately equal to the
scaled expectation at k = 2 and k = 4 but, starting from k = 6,
is a factor 2−3 higher. This may indicate an actual intensity
of atmospheric turbulence at high altitudes that, according to
the discussion in Paper I, may easily show such fluctuations. A
smaller than expected measured value of coefficient bk at k = 4,
6, and 8 implies a higher value of σat value at small R. It is un-
likely that it is of atmospheric origin, but it is probably due to
some effects caused by the active optics performance.

Let us consider a sum ∆2
a+r = σ

2
at + C2σ2

rf that determines
the properties of a noise from the reference field alone. This
component (Fig. 2c) has a typical parabola-like shape with a
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Table 2. Astrometric error components (mpx) and optimal field radii
Ropt at k = 2, 4 . . . The last column contains data averaged over k;
centroid error ηε0 is given for the brightest stars.

k
2 4 6 8 10 12 〈k〉

x, right ascension
σat 2.1 1.7 1.3 1.3 1.1 1.1 –

Cσrf 2.1 1.7 1.3 1.3 1.1 1.1 –
ηε0 1.9 1.9 1.9 1.9 1.9 1.9 1.9
∆a+r 3.0 2.4 1.8 1.9 1.6 1.6 ∆〈a+r〉 = 1.1
∆k 3.5 3.0 2.5 2.5 2.4 2.4 ∆〈k〉 = 2.2

y, declination
σat 2.8 2.0 1.5 1.6 1.4 1.4 –

Cσrf 2.8 2.0 1.5 1.6 1.4 1.4 –
ηε0 2.2 2.2 2.2 2.2 2.2 2.2 2.2
∆a+r 4.0 2.8 2.1 2.2 2.0 1.9 ∆〈a+r〉 = 1.4
∆k 4.6 3.6 3.0 3.1 2.9 2.9 ∆〈k〉 = 2.6

Ropt 0.22′ 0.28′ 0.5′ 0.55′ 0.8′ 0.9′ –

minimum at the point Ropt where σ2
at = C2σ2

rf . Note a gradual
decrease in the ∆a+r value when applying large k and a corre-
sponding increase in Ropt. In our case, the minimum is achieved
at k = 10, 12 and R ∼ 0.9′, where ∆a+r = 1.59 mpx for right
ascension and ∆a+r = 1.91 mpx for declination. The total astro-
metric error ∆k changes with R similarly and also has a mini-
mum at R = Ropt.

Centroid errors ηε for the brightest unsaturated stars of
16 mag are equal to 1.86 mpx (230 µarcsec) for the right as-
cension and 2.22 mpx (280 µarcsec) for declination and are on
the order of best attainable ∆a+r. The atmospheric error compo-
nents, ∆k value for these stars and Ropt for each k, are listed in
Table 2.

Note that for any arbitrary k value (or equivalent order
m = k/2 − 1 of a polynomial model (7)), one can always find a
field size R = Ropt at which σat = Cσrf and where atmospheric
image motion represents less than half of the total variance (9).
Astrometric measurements thus are never atmospherically lim-
ited provided that the reduction is performed with Ropt. This
conclusion is also valid for the sky areas with a poor sky star
density as discussed in Sect. 5.

4.2. Averaging over modes

Positions Wk calculated with different k and different reference
field radii Ropt are related to distinctive sets of stars and hence
have almost uncorrelated components σrf . Atmospheric errors
σat computed with different k (modes m in Eq. (3)) are also
weakly correlated since the effective turbulent layer heights h
depend on k. Thus, while at k = 2 all turbulent layers from 5
to 20 km heights contribute equally to the variance of Wk, the
use of k = 12 effectively cuts off turbulence contribution from
h < 20 km (Fig. 12 of Paper I). It is natural therefore to average
positions Wk with weights Pk = 1/∆2

a+r calculated from Table 1:

W〈k〉 =
∑

k

PkWk/
∑

k

Pk. (13)

The total weight of the average is
∑

Pk = 4.0P12. However,
taking almost equal size of reference fields for pairs k = (2, 4),
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Fig. 3. Astrometric error as a function of the target flux I. Different
dots – ∆k at k = 2, 4 . . . 12; open circles – error ∆〈k〉 of positions av-
eraged over modes; solid line – approximation (14) of ∆〈k〉 assuming
η = 1 and with ε0 given by Eq. (2). Upper panel – right ascension,
lower – declination.

(6, 8), and (10, 12) into account, the effective weight is instead
Peff � 2.0P12. The variance of weighed positions (13) is

∆2
〈k〉 = ∆

2
〈a+r〉 + η

2ε2
0 (14)

with a new reference field component

∆2
〈a+r〉 =

P12

Peff
∆2

a+r | at k=12 (15)

decreased almost twice (Table 2) in comparison to its value∆2
a+r

at k = 12.
Figure 3 shows errors∆k (at R = Ropt) and ∆〈k〉 as a function

of the target brightness. These estimates were obtained from
the convergence of the measured positions Wk and W〈k〉 at dif-
ferent frames and after applying a small correction for color
effects (Sect. 6). The model dependence (14) plotted at η = 1
(solid curve) predicts the measured estimates till R < 17 mag
well. At the brighter end the actual errors exceed their values
expected at η = 1 due to the non-Poisson noise in star profiles
(η2 ∼ 1.2). The astrometric error ∆〈k〉 is roughly equal to ε0

at R > 17 mag and to 1.5ε0 for brighter stars. An error com-
ponent introduced by incorrect tying to the reference frame is
thus rather small.

5. Astrometric error at low sky star density

The results obtained above for high sky star density frames can
be used to predict astrometric performance of VLT at other
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Fig. 4. An error of referencing ∆〈a+r〉 as a function of reference field
total light n: based on the scaling expression (16) at C2 = 0.5 (solid
curve), the same at C2 = 1 (dashed line), and found from a direct
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sky regions. The most important parameter necessary for this
purpose is the integral light flux n registered from reference
stars. Its average value for our OGLE field is equivalent to
n0 = 12× 106 e− from a square minute of arc (60 stars brighter
than R = 20 mag at 1 × 1′ area). It essentially affects the σrf

value, which according to Eq. (12) varies as σrf ∼ n−1/2, while
σat does not depend on n (10). At n � n0 the curves in Fig. 1
relevant to the σrf component are shifted, moving the point Ropt

to a new position R′opt = θRopt.
Using Eqs. (10) and (12) for scaling σat and σrf compo-

nents at a new value of R′opt from a requirement of a bal-
ance σat = Cσrf , we find θ = [(ωC2n0)/(C2

0n)]1/(2bk+2) where
C2

0 = 0.5. Note that Eq. (12) systematically gives underesti-
mated σrf value for frames with a small number of reference
stars N ∼ (3−5)Nmin. In view of this we introduce the param-
eter ω ≥ 1 equal to the ratio of the actual σrf value given by
Eq. (11) to its approximate estimate (12). For the sample an-
alyzed, ω � 1 at n ≥ 0.2n0, while at low n = 0.1n0 it grows
from 1 to 2.5 when k changes from 4 to 12. For Ropt and bk rel-
evant to some k we obtain R′opt = [(ωC2n0)/(C2

0n)]1/(2bk+2)Ropt,
hence the expected error of referencing

∆′a+r =
[(
ωC2n0

)
/
(
C2

0n
)]bk/(2bk+2)

∆a+r. (16)

Based on this expression and using parameter values listed in
Tables 1 and 2, we calculated the expected values of ∆′a+r at
n = 0.1 . . .1.0n0 in two variants with C2 = 0.5 and with C2 = 1.
The resulting error ∆〈k〉 that corresponds to the error (15) of the
average over modes is shown in Fig. 4.

To control our scaling approach, we performed direct com-
putations of ∆〈k〉 using the original but artificially sparsed star
sample and with no iterative improvement of reference star
positions (C2 = 1). Results (open circles) match the esti-
mates (16) well. Note that at n ≥ 0.2n0 a good referencing
at the 1.5−2 mpx level is maintained, which is comparable to
the bright star centroid precision. At n ∼ 0.1n0 due to the de-
crease in a light signal from reference stars, the accuracy of the
referencing degrades sharply. Besides, at highest k = 12 order,
the optimum field size 2R′opt = 3.2−3.5′ is near the CCD size.

Table 3. Centroid precision and astrometric error (µas) at a 10 min
total exposure and different n/n0 for reduction versions with C2 = 1.0
and 0.5. A ratio of σ2

at to the total error (last column) and reference
field contribution ∆′a+r (last line) are also given.

Centr Red. with C2 = 1 Red. with C2 = 0.5 σ2
at

R error n/n0 n/n0 ratio

mag ηε 0.1 0.2 1.0 0.1 0.2 1.0 %
20 300 308 304 301 305 302 301 0
19 167 181 174 170 177 172 169 1
18 98 120 110 103 114 106 101 3
17 65 95 81 72 87 77 70 6
16 42 81 64 52 71 58 49 13
15 26 75 56 41 63 48 36 24
14 16 72 52 35 60 44 30 35
(0) (0) 70 49 31 58 40 25 50

At very low n the star number in the area of the optimal
radius R = R′opt may be smaller than Nmin and so insufficient
for implementation of the desired k order. This is extremely
unfavorable since it forces one to use lower k or, even worse,
perform reduction without optimal R. Using the above expres-
sions for R′opt and Nmin and assuming C = C0, we find that a low
limit of reference star density necessary to implement some k
symmetry order is nmin = n0[k(k + 2)/(8πn0R2

opt)]
1+1/bkω−1/bk

Assumingω ≈ 2−3 and taking bk and Ropt values from Tables 1
and 2, we find that approximately nmin � 0.01n0 at any k from 4
to 12. This integral star density (about 0.6 stars brighter than
R = 20 mag per 1 × 1′ area) is typical of the Galactic pole
(Allen 1973).

The inequality N > Nmin can be easily restored in any case
by incorporation of some extra faint stars as reference. This
does not degrade the precision; on the contrary, the total flux n
will only increase and, according to Eq. (12), σrf improves.
We conclude therefore that even at low sky star density the key
problem of astrometric error improvement is related to the tele-
scope light signal limitation but not to the atmospheric image
motion (see Table 3, last column).

Table 3 gives the centroid precision and astrometric er-
ror (14) for 14−20 mag (R) stars expected from a reduction
of a series of frames with a total T = 10 min exposure and
of 30−50 min (depending on observation mode) duration. For
bright 14−16 mag stars we adopted η2 = 1.3, for 17 mag
we used η2 = 1.2, and for fainter stars η = 1. The estimates
are given for reduction versions corresponding to C2 = 1 and
C2 = 0.5. In the last line, the total reference field contribution
∆′a+r is given, which is equal to the limiting astrometric preci-
sion of very bright stars (ε = 0). At high sky star density, this
limit is 25 µas per 10 min exposure. The last column contains
a ratio of atmospheric image motion to the total error; as dis-
cussed above, this portion cannot exceed 50% by the definition
of the optimal field size.

For the brightest stars, thus, the expected accuracy of ob-
servations in the Galactic bulge is equal to 30−50 µas at
10 min exposures, degrading to 50−80 µas at n ∼ 0.1−0.2n0

(2−4 × 104 stars to R = 20 mag per square degree, which
corresponds to galactic latitudes of 20−30◦; Allen 1973). For
stars fainter than R > 17 mag, the error does not depend on the
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characteristics of the reference field due to a small light signal
from the target.

6. DCR and residual chromatism of LADC

The effects of DCR was considered elsewhere. In particular,
Monet et al. (1992) studied restriction of the accuracy of proper
motions derived from the reduction of frames obtained at differ-
ent hour angles. In this study we use a mathematical approach
similar to the one used by Monet et al. (1992). However, we
have to consider the joint influence of an atmosphere and of
the chromatic corrector LADC (Avila et al. 1997) used at VLT
to improve the image quality.

It is known that the relative displacement S of two
monochromatic images with wavelengths λ1 and λ2 is propor-
tional to a tangent of zenith distance z: S = δ tan z where δ is the
coefficient of atmospheric dispersion dependent on a difference
λ1 − λ2. The corrector reduces this displacement, incorporating
a negative equivalent displacement −(δ−d) tan z where d is the
residual error of the corrector. The observed relative displace-
ment of the images in a vertical direction therefore is d tan z.
When a series of frames is obtained at VLT, the corrector is
preset at some fixed zenith distance zL and this setting does not
change. Therefore

S = δ(tan z − tan zL) + d tan zL. (17)

If λ1 is an effective wavelength of a target star and λ2 is effec-
tive wavelength of reference field, the measured displacements
S x, S y are equal to the S projection at the CCD coordinate sys-
tem axis (x: opposite to right ascension, y: along the declina-
tion)

S x = S sin γ + S x0, S y = S 0 − S cosγ + S y0, (18)

where γ is the angle formed by a direction to zenith and the
y axis, S 0 is the S value in a meridian, and S x0, S y0 are zero-
points.

The values of δ and d were found from a least square solu-
tion of Eq. (18) for each star. As input, we used the positions
of stars in all 280 frames that were calculated with k = 10
and R = 0.8′. The results are shown in Fig. 5 as a function of
relative color v− r − (v − r) where v − r is the mean instrumen-
tal color index of a local star group used as the reference for
some target star. The distribution of point estimates in plots is
approximated well by linear functions

δ = −2.6 + (233 ± 8)
[
v − r − (v − r)

]
d = −(11.0 ± 0.9)

[
v − r − (v − r)

]
, (19)

where values are expressed in mpx and correspond to atmo-
spheric pressure 744 mb, temperature 11◦, and 11% humidity.
The residual scatter of points in Fig. 5 is σ(δ) = 11.9 mpx for
δ and σ(d) = 1.3 mpx for d, and a factor 4−5 exceeds formal
errors of δ and d value determination. It can only be partially
explained by the errors of color determination (±0.02 mag).
Most likely, this scatter is intrinsic and not can be adequately
modelled using only v − r colors.
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To check the reliability of the results, we performed a con-
trol computation of a chromatic refractive index ρ using the
expression

ρ = 346mas
∫ λmax

λmin

λ−2T (λ)I(λ) dλ/
∫ λmax

λmin

T (λ)I(λ) dλ (20)

given by Pravdo & Shaklan (1996). The integration is per-
formed within the wavelengths limits λmin, λmax defined by a
combined transmission T (λ) of the filter and CCD, and I(λ)
is the star flux function of wavelength. This expression is nor-
malized to 0◦ and a pressure of 1013 mb. We calculated ρ for
stars with blackbody temperatures corresponding to G0 and M0
spectral types, where V − R colors 0.52 and 1.1 are typical of
the analyzed sample of stars. The difference in ρ values com-
puted for these spectra and reduced to a unit interval of colors
is 38 mas/mag and corresponds to the color coefficient in ex-
pression (19) for δ. After reduction to the pressure and temper-
ature at VLT, we obtained 216 mpx/mag, which agrees with the
model (19) value within the error limits.

Using LADC reduces the bias caused by atmospheric color
effects considerably. At precise presetting of LADC zL = z, the
bias S is minimized to S = d tan zL with coefficient d 20 times
smaller in comparison to atmospheric coefficient δ.

Image displacement induced by the DCR effect can be con-
siderable. For example, for a red star with v − r = 1.43 and
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local reference field average color v − r = 0.82, the amplitude
of the displacement at hour angles t ∼ 3.5 reaches 60 mpx
with an average 20 mpx/hour rate of image motion (Fig. 6).
For our observation session, LADC was set at zL = 45◦ while
in a meridian zm = 37.3◦.

The DCR effect is a cause of proper motion systematic er-
rors proportional to the difference in S x, S y values related to the
median moments of frames representing Ep1 and Ep2. In view
of this, observations should be carried out at a minimum differ-
ence in hour angles ∆t. Let us estimate the restriction on ∆t if
star colors and coefficients of Eqs. (19) are known. For observa-
tions in meridian at zL = zm, Eq. (17) is reduced to S = d tan zm.
Considering γ ∼ t, from Eqs. (18) one can see that the largest
error σ(S x) ∼ ∆tσ(d) tan zm dependent on ∆t is expected in S x.
At the desired accuracy, say σ(S x) = 0.1 mpx and σ(d) quoted
above, a typical restriction on ∆t is roughly 20 min, irrespective
of a star color. The precision of model (19), thus, is marginal
for calibrating near meridian observations obtained with the fil-
ter Rspecial.

Restrictions are much stronger for observations at large
hour angles. In this case the main error is caused by the δ term
in Eq. (17), and even with use of colors, a good calibration of
DCR displacements is possible only at a very strong restriction
∆t ≤ 1−5 min.

7. Conclusion

This study is a first practical test of an astrometric method
based on the symmetrization of reference fields. We have
shown that, in contrast to the common belief, differential astro-
metric observations with large telescopes (providing perform-
ing an adequate reduction) are not atmospherically limited. At
optimal reduction, the photon centroid noise from the reference
field is exactly equal to the atmospheric noise. Considering ex-
tra cetroiding errors from the target star, the photon noise com-
ponent always dominates the image motion (Table 3).

This study allows us to predicate that astrometric precision
of observations at the VLT is 30–50 µas for stars of 14–16 mag
at 10 min exposure (a session of observations taking about
40 min). This precision is good enough for determining precise
parallaxes and proper motions of stars and for examining mi-
crolensing effects and exoplanets. Of course, the measured par-
allaxes and proper motions would be relative. Moreover, since
each target star position is measured with reference to its pecu-
liar set of background stars, the zero-points of parallaxes and
proper motions are different for different stars. This circum-
stance, however, is not critical for the purposes of exoplanet
and (to a minor extent) for microlensing studies that only re-
quire relative astrometric data. If necessary, zero-points can be
easily reduced to a common system by iterative procedure.

The most essential restriction for VLT is the saturation of
bright images. Also, the sufficiently large light signal necessary
for a good referencing can be obtained if observations are re-
stricted to galactic latitudes 20–30◦. Atmospheric color effects,
generally rather large, can be compensated by relevant calibra-
tions based on star colors and by applying restrictions on hour
angles. Long-term systematic errors were not considered in this
study and may be a source of additional bias.

Existing filled aperture 8−10 m telescopes are powerful as-
trometric tools due to effective averaging of atmospheric fluctu-
ations of a phase over the aperture and to providing strong light
signals. For larger telescopes, in view of dependences ε ∼ D−1,
σrf ∼ D−1, and σat ∼ D−3/2, a further increase in the accuracy
is expected. Interesting possibilities are allowed by apodiza-
tion of an entrance pupil (Paper I) and, in particular, by use
of adaptive optics that both improves centroiding precision and
removes the low-frequency components of the image motion
spectrum.
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