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Non-adaptive Wavefront
Control
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Specific problems in ELTs and OWL

®m Concentrate on problems which are specific for
ELTs and, in particular, for OWL

®m Alignment and shape correction of optical surfaces

» Large number of segments in segmented mirrors
» Six optical surfaces
» Two segmented mirrors

» Requires mainly further development of already existing active
optics techniques

® Operation in open air
» Advantages: thermal equilibrium and predictable wind loads
» Disadvantage: larger wind loads
» Feasible with extensive use of fast control loops




Overview : Wavefront Control
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Pre-alignment

m Alignment of segments

» Use of a spherometer to align a new segment relative to its
neighbours

» Stacking of the images produced by individual segments
® Alignment of optical elements

» Use of a fibre extensiometer to be developed within the FP6 ELT
study

B Residual errors after pre-alignment

» Positions M1 — M6 : ~1 mm
» Tilts M1 - M6 : ~ 1 arcsec

» Piston errors of segments : ~ 2 um
» Deformations M3 and M4 : ~ 30 um



Correction strategy

m Complete correction in one step

» Measurements from several Shack-Hartmann sensors and one phasing
sensor

» Inversion of the matrix relating the actuator degrees of freedom to the
measured parameters by singular value decomposition

» Calculation of the actuator commands from the measured signals with
the inverted matrix

» Disadvantage : requires a very large matrix
®m Alternative approach : split the correction into several steps

» More than one possible strategy

® One sequence of correction steps
» Correction of slope errors with the segments

» Phasing of the segments
» Correction of misalignments and deformations of M1 to M6




Active optics corrections with one Shack-
Hartmann and one phasing wavefront sensors

Initial errors M1, M2 ,

Slope corrections with M1 and M2




Full correction with wavefront sensors in several

field positions

® Aberrations generated by
» Misalignments of the mirrors

» Deformations of the meniscus
mirrors S

» Characteristic patterns of additional
field aberrations

» Correction with an in-pupil mirror
only possible for one field angle

® Required wavefront sensors

» 1 Shack-Hartmann sensor with 19
lensets per M1 segment

» At most 6 Shack-Hartmann sensors
with 20 by 20 subapertures covering
M1

» 1 (baseline) or 2 (optional) phasing
sensors

M4
(pupil)

Wavelront
Sensors



Phasing wavefront sensors

® Multi-wavelengths techniques

» Reduce the wavefront piston

steps of 2 um to less than 100
nm

® Narrowband techniques

» Shack-Hartmann: lenslets
covering subapertures centered
on segment borders

» Information contained in the
position of the maximum and in
the shape of the diffraction -
pattern | \

» Applied in the Keck Telescope
extracting the shape information

» Problem : exact positioning of a
large lenslet array in the re-
imaged pupil
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Phasing wavefront sensors: Mach-Zehnder

m Spatial filtering in a
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Phasing wavefront sensors — phase filtering
(LAM/IAC)
B Adding of a phase
. —>
delay in the center of $
the image
» Easier to align than the
Mach-Zehnder sensor
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Phasing wavefront sensors — defocusing (IAC)
and pyramid sensor (Arcetri)
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Phasing wavefront sensors — identification of
borders

®m Possible algorithm : contrast enhancement and Hough
transform

» Promising for large piston steps
» To be validated for small piston steps

® Imaging of the gaps
» 10% reduction of the intensity for pixels covering gaps
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Phasing of petals

B The M2/corrector
support structure may
optically divide M1 into
SiX petals.

m Struts thin enough to
allow optical phasing of
the full segmented
mirror

® Backup solution :
additional special
wavefront sensor for
the phasing of the
petals relative to each
other
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Phasing — disentangling M1/M2 segmentation

B Segmentation patterns
originating from M1
and M2 are
superimposed in the
detection planes of the
wavefront sensors

®m Disentangling could be
done by

» Spatial filtering in the
Fourier space

» Use of two or three
phasing wavefront sensors
in the field
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Active Phasing Experiment

m Comparison of different phasing wavefront sensors

m Test of simultaneous correction of wavefront errors generated
by segmented and flexible meniscus mirrors
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Full scale pressure measurements

Jodrell Bank Radio Telescope
Diameter : 76 m
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Jodrell Bank — Location of pressure sensors
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Jodrell Bank — Power spectrum

Wind speed: 10 m/sec, Sampling rate : 8 kHz, Integration time : 78 min
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Main axes control - wind spectra and altitude
transfer function

® Von Karman wind spectra — "T:?sco;pe atzemth PSDumtforce T
» Wind speed 10 — 14 m/sec 3
» Turbulence intensity 0.15
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Main axes control - Residual tracking errors

Goal: Residual tracking
errors be within the
correction range of the
fast tip-tilt corrections
with the M6-support

Closed-loop bandwidth:
1 Hz

Robust design with
sufficient modulus
margins

Residual RMS errors:
0.19 arcsec for O deg
0.32 arcsec for 60 deg
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Rolling friction effects of Bogies
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Correction of tracking errors by M6-support
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Control of segment position

Control of the segment
position based on signals
from the edge sensors

Wind speed : 10 m/sec,
corner frequency: 0.07 Hz,
turbulence intensity: 0.15

Lowest segment piston
frequency : 60 Hz

Residual closed-loop error
with a 10 Hz bandwidth :
~ 7 nm

Further reduction may be
possible with acceleration
feedback control
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Wind Evaluation Breadboard
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Conclusions

®m Further development required for phasing wavefront
Sensors
» Disentangling of overlapping segmentation patterns
» Detection of the segmentation pattern
» Optionally continuous wavefront sensing
» Questions are addressed by the APE experiment

B Operation of the telescope seems feasible in open air

» Segmented mirrors controlled by fast feedback loops

» Large meniscus mirrors shielded from the wind

® No fundamental problems with the non-adaptive
wavefront control
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