

OWL Phase A Review - Garching - 2nd to 4th Nov 2005

Telescope Structure and Kinematics

(Presented by E. Brunetto, F. Koch)

OWL Phase A Review - Garching - 2nd to 4th Nov 2005

and

KINEMATICS

Assumption and Principles.

- Evolution.
- ■Base Line Design.
- ■Sub-Systems.
- Technology developments.
- Verifications.
- Structural Analyses.
- Conclusions.

From System analysis to conceptual design.

DESIGN ASSUMPTIONS.

- Soil characteristic.
 - Paranal 50000 MPa.
 - La Palma 5000 MPa.
- Existing infrastructures.
 - Harbor.
 - Roads.
- Seismicity.
 - Paranal 0,34 g
 - La Palma 0,06 g.
- Wind.
 - > 10 m/s.
- COSTS
- SAFETY
- VERIFICATION
 - > What
 - > Who
 - > When
 - > How

DESIGN PRINCIPLES.

- Maximize dynamic and static performance.
 - Minimize mass.
 - > Embedded configuration (low CoG).
- Manufacturing.
 - Existing technology, availability.
 - Mass produced modular system.
- Assembly, Integration and Verification.
 - Transport (maximum size).
 - Assembly (Self standing).
 - Instrument.
 - Metrology.
- Operations.
 - Low thermal inertia.
 - Wind disturbance.
- Maintenance.
 - Segment re-coating
 - Access to sub-systems.

Design evolution (I)

Design evolution (II)

Opto-mechanical options.

Optics & mechanics design baseline.

- Six fold symmetry.
- Six focal stations.
- Diffraction pattern.
- Near-circular M1.
- Perfect match between structure and segments.
- 60° observation mode.
- ±90° maintenance mode.
- Segment size 1.6-m
 - ▶M1 3048 segments.
 - ➤M2 216 segments.

BASELINE

- >Steel structure.
- >Kevlar tension ropes.
- **≻**Glass ceramic.

Rotating Mass 13350 tons Locked rotor 2,7 Hz (2005)

AZIMUTH STRUCTURE

ALTITUDE STRUCTURE and CORRECTOR

Main Axes Kinematics

- Merged drive and bearing
- Low-cost tracks and alignment.
- Maintenance-friendly, high redundancy.
- Highly reliable
- Optimal load distribution
 - (connected ⇒ hydraulic "whiffle tree").
- Control of dimensional changes.
- High telescope dynamic performance.
- Self-aligning.
- Required tangential resolution ~ 0,1 mm.
 - Delivered tangential resolution µm

BOGIES CONCEPT 9. AZIMUTH RING STRUCTURE

Observatory

Segment assembly.

PHASING

- **▶** Position Actuators
- > Edge Sensors

Accuracy: ± 5 nm. Goal ± 2 nm Stroke 15 mm

Control bandwidth goal 10 Hz

Wind Evaluation Breadboard

OWL and **VLT**

- ■Lightweight

 >OWL based on VLT

 design. Structural steel

 mass 679876 tons.
- ■Drive & Bearing location▶Large radius
- Optics Load➤ Distribution➤ Path

Mechanical structure verification.

FEASIBILITY, COSTS AND SAFETY:

- ✓ CCI (Sulzer): Feasibility study of Framework structure.
 - ✓ Manufacturing → availability, technologies, personnel, schedule,
 - ✓ Nuclear industry Quality Assurance for welded structure.
 - ✓ Costs analysis ex works (9,6 Euros/kg and 2 Euros/kg).
- ✓ IHF: Mechanical safety analysis.
 - ✓ Buckling (maximum stress, material choice).
 - ✓ Pretension of ropes.
 - ✓ Fatigue (wind buffeting).

CONTROL:

- ✓ TUM: Reduced model (40 to 1000 DoF).
- ✓ EPFL: Telescope Main axes Control study.
- ✓ Segment Control
- ✓ TUM: Impact of soil and foundation.

WIND DISTURBANCE:

- ✓ CADFEM: Wind disturbance. Computational Fluid Dynamic study.
- PSP & Jodrell Bank: Wind on 76 m Lovell telescope.
- Wind tunnel tests.

ESO:

- Soil and Foundation.
- Thermal Analysis.
- Wind disturbance simulations.
- Segments Control simulations.

Technology Developments

Aramid fiber Tensioning ropes (Kevlar).

- Thermal compensation.
- Tension control.
- Wind induced vibrations (Vortex Shedding).
- SiC segments substrate.
- Segments Durable Coating
- Magnetic Levitation. Main axes kinematics.
 - Frictionless.
 - Low track tolerance.
 - High stiffness and damping.

OWL Phase A Review - Garching - 2nd to 4th Nov 2005

Structural Analyses

Structural Analysis - Objectives

- Assess structural feasibility of baseline design
- Predict static and dynamic behavior
 - Define actuator stroke
- Input to error budget
- Provide reduced control models for dedicated simulations
- Compare different configurations
- Pre-optimize mechanical structure
- Evaluate structural safety compliance

Finite Element Model

Model Assumptions:

- Representative stiffness and madistribution
- > 40000 nodes
- > 146000 elements
- Bogies coupling Alt and Az
- Mirror segments rigid
- > Fixed at foundation interface

Gravity Analysis

- Differential displacements 0° to 60°
- Mean rigid body motions:

Mirror	Piston [mm]	Tilt [arcsec]	Decenter [mm]
M1	7.8	0.3	13.2
M2	11.2	13.4	(30.8)
Corrector	12.1	-44.9	23.0
M2 – M1	3.4	13.1	-13.2

- Max. segments actuator stroke: 11 mm
- Stress level (max. 250 MPa)
 - Increase cross sectional areas
 - Modify topology
 - > Higher strength material
 - Optimization analysis

Modal Analysis

- Eigenfrequencies and mode shapes
- Effective masses
- Indication of specific stiffness
- Bandwidth of control systems

Mode	Frequency	Effective mass in % of total						Mode
	[Hz]	MX	MY	MZ	IXX	IYY	IZZ	
1	1.59	67				2		Cross altitude
2	2.58		30		29			Altitude LR
3	2.86						44	Azimuth LR
9	4.03			46				Piston altitude
260	7.32			0.1				Piston M2 unit

Modal Analysis

■ Locked rotor mode shape at 2.6 Hz

Dynamic Wind Analysis

- Random vibration analysis (open loop)
 - Complete telescope FE Model
 - > 400 modes (10 Hz) represented
 - PSD Wind load on M1 and M2 segments
 - M1 (10 m/s), M2 (14 m/s)
- 1. Macro scale wind effect on segmented mirrors
 - Wind load applied on entire segmented areas
 - Uniform and fully correlated
- 2. Micro scale wind effect on phasing error
 - Wind load applied on parts of M1 and M2 segments
 - Loaded area stepwise increasing (1 → all segments)

Dynamic Wind Analysis

Macro scale wind effect

Dynamic Wind Analysis

Effect of Soil and Foundation

Soil-structure interaction

Influence on dynamic performance

Sensitivity study

- FE Model of soil added
- Variation of soil properties:E = 500 -1000000 MPa
 - La Palma 5000 MPa
 - Paranal 50000 MPa
- Comparison of transfer functions under wind load

Effect of Soil and Foundation

- Results for weak soil (e.g. soft and light tuff):
 - Difference of peak amplitude: 10 %
 - > Reduction of frequency: 4 %
 - Lightweight telescope supported on large area

Structural Safety Analyses

- Wind (30 m/s uncritical)
- Fatigue (uncritical, max. variable stress 17 MPa)
- Buckling
 - Moderate design modifications to fulfill safety requirements
- Pretension of ropes
 - Structure stress sensitive to pretension
 - Optimization of pretension process
 - → Minimize stress and maintain tension (gravity, temperature, etc.)

Earthquake

- Important design driver
- > 0.2 g horizontal ground acceleration
- Allowable stress exceeded (20 %)
 - Higher steel quality
 - Changing beam cross-sections
- Paranal-like conditions (0.34 g MLE)
 - Additional design modifications
 - Passive or active damping devices

Conclusions

Mechanical structure feasible

- Today standard and well-proven Technologies.
- Stress level not negligible but within the limits of the applied technologies.

Dynamic performance:

- Compact and lightweight structure.
- High eigenfrequencies.
- Less sensitive to wind excitation.
- Further improvements already investigated.
- Effect of soil on dynamic performance low
- Structural safety:
 - Wind and fatigue: uncritical.
 - Buckling: minor modifications required.
 - Earthquake: important design driver.

This design concept is one possible answer to OWL requirements. Other concepts can be envisaged. **BETTER FASTER CHEAPER**