Colour computer vision: fundamentals, applications and challenges

Dr. Ignacio Molina-Conde Depto. Tecnología Electrónica Univ. of Málaga (Spain)

Outline

- Part 1: colorimetry and colour perception:
 - What is colour?
 - Colour spaces and differences
 - Environmental effects
 - Colour spaces and neurophisiology
- Part 2: colour computer vision:
 - Restoration
 - Segmentation
 - Pattern recognition
 - CBIR
 - Challenges

Part 1

Colorimetry and colour perception

Colour?

- Colour attached to the object or to the brain?
- How could we describe the colour of the star?
- Problems:
 - Colour naming and quantification.
 - Colour differences.
- Colour perception affected by:
 - Fatigue.
 - Psichology.
- Consider colour-based devices.
- Response: colour models or systems (colour spaces).

Colorimetry

- Science and technology to quantify and describe the human colour perception.
- Trichromacy: three independent channels for conveying color information. Most people make the same matching.
- Metamers: pairs of power spectrums that match perceptually.
- Thus... if the observer says a mixture is a match then receptor excitations of both stimuli must be equal.

Colour matching experiment

- CIE: (*Comission Internationale de l'Eclairage*).
- Color matching experiment: human perception based standard (1931).
- Standard observer: a composite of a group of 15 to 20 people.
 CIE Experiment

XYZ colour space

• Triestimulus values: negative values, highly correlated and not very intuitive.

MacAdams Ellipses

- MacAdam diagram in the CIE 1931 colour space (Just Noticeable Differences)
- New concept: perceptual uniformity

Color space used for TV

- Original RGB space cannot be directly applied:
 - Such exact primaries cannot be achieved.
 - XYZ colors are not physical.
- Linear transform from XYZ to RGB PAL EBU:
 - Standarized primaries are used (PAL EBU):

Red:	x=0,64, y=0,33, z=0,03
Green:	x=0,29, y=0,60, z=0,11
Blue:	x=0,15, y=0,06, z=0,79

RGB used for TV

Colors are R, G, B triplets (vectors)

- Perceptually non-linear (non-uniform)
- A subset of the colours humans can perceive

Basic colour attributes

• Purity or Hue (red, yellow, blue, etc)

• Saturation or Chroma (rose, brilliant red, etc)

• Luminance (black, white, dark gray, etc)

500 600 700

0.8

Other colour spaces

- Digital imaging: Y'U'V', YCrCb
 - Linear transform from RGB.
 - Two chrominance components plus Luminance.
- Polar coordinates: HSI, HSV, HLS.
- Perceptually uniform?:
 - Munsell (1905) notation system: Hue, value, Chroma.
 - L*a*b*, L*u*v* (CIE, 1976), CIECAM02, iCAM, ATTD.

Colour perceived

- Colour of light captured by a camera depends on:
 - Spectral reflectance of the surface light is leaving.
 - Spectral radiance of light falling on that patch.
 - Transfer functions of the camera.
- Color perceived depends on:
 - Physics of light.
 - Visual system receptors.
 - Brain processing, environment.

Schematic diagram of the human eye

Blind

- Human eye is our camera: iris, pupil, lens, and...
- Photoreceptors: rods and cones. \bullet

Colour appearing Phenomena

- Environmental effects and adaption.
- Adaption (to light / darkness, and chromatic -Stevens and Hunt effects-).

Lineal mapping

Perceptual mapping

- Simultaneous contrast and induction.
- Other effects: Abney, Helmholtz-Kohlrausch, Helson-Judd, Bartleson-Breneman.

Simultaneous contrast

Some effects

Part 2

Colour computer vision

Role of colour in image processing

• Key to easily locate objects:

• Markets: textile, paintings, quality assessment, etc

Computing colour differences

• Euclidean for uniform spaces:

$$d_{e}(i,j) = \sqrt{(C_{i,R} - C_{j,R})^{2} + (C_{i,G} - C_{j,G})^{2} + (C_{i,B} - C_{j,B})^{2}}$$

- Others:
 - Weighted Euclidean: $d_{ep}(i,j) = \sqrt{p_R(C_{i,R} C_{j,R})^2 + p_G(C_{i,G} C_{j,G})^2 + p_B(C_{i,B} C_{j,B})^2}$

- Angular:

$$d_{a}(i,j) = a\cos \frac{C_{i}C_{j}^{t}}{||C_{i}|| ||C_{j}||}$$

$$p_{R} = 2 + \frac{C_{i,R} + C_{j,R}}{512}$$

$$p_{G} = 4$$

$$p_{B} = 2 + \frac{512 - C_{i,R} - C_{j,R}}{512}$$

Image filtering and restoration

- Colour pixels are treated as vectors.
- Vectors cannot be sorted as scalars: statistic operators.
- Impulsive noise filtering (vector median filter, VMF).

Colour image segmentation

- **Target**: group adjacent pixels with a "similar" colour into a region.
- Colour pixels are three-component vectors.
- Many gray scale algorithms can be re-adapted but not all of them.
- Some have become very popular: mean shift (D. Comaniciu and P. Meer, 2002).
- Challenges: textured images, different illuminants, dissimilarity measurement.

From Yining Deng, B. S. Manjunath and Hyundoo Shin, color image segmentation

Colour spaces and dissimilarity measurements

Original

Euclidean (Y'U'V')

Angular (R'G'B')

Euclidean (R'G'B')

Weighted Euclid. (R'G'B')

Euclidean (CIELAB)

Euclidean (CIELUV)

Multirresolution imaging

• Regular and irregular pyramids:

Multirresolution segmentation: results

Foveal imaging

- Model peripheral vision against central.
- Attempts to mimic the retinal acuity profile.
- Non-uniform resolution of sensors.
- Lower the amount of data to be processed.

Cartesian-exponential

Foveal segmentation results

Content-Based Image Retrieval: CBIR

- Searching on a large database for images that match a query.
- Many questions to be addressed:
 - What kind of queries?
 - What constitutes a match?
 - How do we make such searches efficient?
- Applications:
 - Art collections, museums, TV databases.
 - Medical and Scientific.
 - Security (biometrics, pornography).
 - The World Wide Web.

Queries in CBIR

- A query could be:
 - An image provided by the user.
 - A simple and rough sketch.
 - A colour or texture pattern or layout.
 - A symbolic description: "pictures containing faces"

CBIR basic scheme

CBIR example results

- Example: http://corbis.demo.ltutech.com/en/demos/corbis/
- LTU-Corbis Visual Search

LTU-Corbis Visual Search

Some 21st century challenges (i)

- CBIR is really hard: it faces the challenge of matching the human visual system, evolved over a period of more than 100 million years !!
- Difficult matches for machines:

Some 21st century challenges (ii)

- Application examples:
 - Pedestrian recognition: variation of appearance, difficult environment.
 - Surveillance of crowded public places: many objects, occlusions, moving regions.
- Problems:
 - Scene and context categorization.
 - View point variation.
 - Occlusions.
 - object intra-class variation:

Thank you but...

Please, before leaving try to name the colours as quick as you can,

Hint for the first one: YELLOW

Blue Red Green Cyan Magenta Black Pink Yellow Orange Violet Brown Purple Cyan Indigo Red Green Blue

Further questions?... My e-mail: imolinac@eso.org