
INNOVATIVE SOFTWARE

ENGINEERING

APPLIED TO NGC FOR

OPTICAL DETECTORS

Claudio Cumani – Andrea Balestra

INS Monthly Meeting - 2007, October 26

Software for the NGC controller

 NGC = New General detector
Controller

 Basically same electronics for both
infrared and optical detectors

 NGC software

 Base software, to interface to the
NGC hardware (common to infrared
and optical detectors)

 Control software (different for
infrared and optical detectors)

 Why 2 different flavors of
software for NGC?

2

NGC
hardware

NGC base
software

NGC IR
software

NGC OPT
software

Differences btw IR and OPT detector controllers: intrinsic

 “Exposure” handling

 Optical

Rigid scheme for exposures (wipe - integrate - read).

Active intervention of the control-server during the exposure is required
(application of new voltages in each state).

“Active” interface to different kinds of shutter controllers (open/close,
status check, open/close delays, etc.).

 Infrared

Detector continuously read-out (infinite loop).

Starting an exposure = starting transfer and storage of data. Once
exposure is started, control server mainly reacts passively on incoming
data-frames.

No “active” interface to external devices (interfaces through trigger
signals, e.g., for nodding).

3

Differences btw IR and OPT detector controllers: intrinsic

 Data handling

 Infrared

Computationally intensive different data pre-processing,

read-out mode dependent.

 Optical

Detector read-out just once at the end of an exposure.

The only processing to be done is pixel sorting and offset calibration

(centroiding and bias-subtraction on request).

4

Differences btw IR and OPT detector controllers: historical

 IRACE is usually used as a "black box". For special acquisition

purposes, it offers a set of configurable "building blocks", code classes, etc.,

from which instrument builder can develop what they need;

 FIERA has been requested to be always a "black box", which hides all the

differences between system configurations (same code must cope with all

possible requirements/configurations);

 In addition optical detector controllers are requested to interface/control

also devices which are not – strictly speaking - part of the detector, like

vacuum and temperature control (and write values in FITS file header)

5

“Good” example of “bad” requirements

 NGC should be backward compatible with previous IRACE and FIERA

controllers

 i.e.: infrared and optical NGC should keep the IRACE and FIERA –

different – interfaces

 Optical and infrared NGCs should look the same

 i.e.: infrared and optical NGC should have the same interface

→ Compromise needed

6

Optical NGC needs its own software

7

 Impossibility to reuse the FIERA software: NGC hardware/software

architecture is “IRACE-oriented” (no DSP, setup-driven replaces database-

driven configuration, etc.)

 Impossibility to use IR NGC control software (IR/OPT differences)

 Base software replaces the FIERA DSP code for interfacing with hardware

(thanks Joerg), but need to develop the rest.

 Learning from experience:

 Produce a sw package where structural modifications are easy

 Take advantage of existing software packages, as well as of tools for automatic

code generation

Optical NGC needs its own software

In practice:

 avoid to “reinvent the wheel”

8

 when possible, let someone else do the dirty job

(message/database/error handling, etc.)!

NGCOSW development – state machine concept

Detector controllers can be modeled as finite
state machines

 finite state machine

model of behavior composed of a finite
number of states, transitions between those
states, and actions.

 Powerful ability to implement decision making
algorithms

 Easy to create (table of possible states and relations
among them)

 The design process involved in creating a State Machine
improves the overall design of the application.

 Restructuring is very easy

 Only model that allows “easy” code generation (for
state transitions)

9

NGCOSW development – state machine concept

10

Exposure state machine
(just an example: don’t try to read it)

Designed using UML (Unified Modeling

Language) with Enterprise Architect.

From this model, code can be

automatically generated!

NGCOSW development – automatic code generation

11

Code generation tool: wsf (workstation software framework)

by Luigi Andolfato (SDD), used – for instance – for TCS and APE

1. automatic code generation from state design (described by a

configuration file) (*)

“automatically generated” code handles state transitions, messages,

commands, error conditions, etc.

(NOT the actions needed to drive an exposure!)

2. implementation of detector control code (CCD, shutter, etc)

3. feedback to SDD

(*) Library created to generate wsf configuration files from Enterprise Architect UML

state diagrams

NGCOSW development – integration in VLTSW

12

Usage and integration of other VLTSW tools:

 configuration: ctoo, stoo

 FITS keywords handling: oslx

 image data transfer: dxf

 command dispatching (base for the super-DCS process): cdp

NGCOSW development – statistics

13

Rough estimate (on last archived version, 3.20)

LOC = Lines Of Code (trying to describe the work in a quantitative way…)

 exposure coordination process: total LOC: 18006

developed LOC and configuration: 6488 (36%)

 image transfer processes: total LOC: 22462

developed LOC: 3055 (13%)

 coordination control process: total LOC: 12283

developed process LOC: 8 (0%) (adapted cdp)

developed LOC (utilities, scripts, oldb configuration): 3304 (26%)

NGCOSW development – statistics

14

NGCOSW development – statistics

For the last archived NGCOSW version (3.20):

NGCOSW = 64004 LOC, 14282 developed (22%)

15

NGCOSW development – some comments on statistics

 “Measuring programming progress by lines of code is like measuring aircraft

building progress by weight” (Bill Gates)

 “Rough” estimate: includes code, database configuration, system

configuration, utilities, etc.

 The code originally written for NGCOSW was more, but code has been

moved into general purpose VLTSW packages

16

NGCOSW development – where do we stand

 NGCOSW August 2007 release

 CCD mosaics readout from one or more outputs

 Data displayed on RTD and saved in FITS files with “one extension per chip” format

 Public command and online database interface

 User Manual

Delivered to MUSE consortium

Used for MUSE and Zimpol prototypes

Integrated in VLT Control Model (BOSS)

 NGCOSW December 2007 release will have

 Interface to the new NGC shutter module

 GUI

 Telemetry (temperature and vacuum control and monitoring)

17

NGCOSW development – pro and cons

18

 Time

Additional time spent by being NGCOSW the first user of wsf and cdp packages outside the SDD division:

interactions with the package developer (Luigi Andolfato) to have support and addition of functionalities

needed by NGC.

But: time saved from coding moved to testing and optimization.

 Standardization

 Integration

NGCOSW triggered the integration of dxf (data transfer facility), signal handling and file I/O within wsf.

Some utility developed by ODT has become part of the wsf module.

NGCOSW also triggered the improvement of FITS extension handling within oslx.

 Code robustness, flexibility and maintainability

Test-driven development (design → system test of generated code → coding) → robustness

State machine = better structure, easy to change → flexibility, maintainability

The part of the code which was explicitly developed to control optical exposures is minimal and well

confined, i.e., it is easier to implement new features (and “less developed lines = less bugs!)

 Dependence on other software packages

The end

The end?

Coming soon: SysML and systems engineering triggered by our experience

with DOORS, requirement handling, design tools, etc.…

… matter for a next talk!

19

