How CCD Quantum efficiency is computed?

Definition:

This is the formula used in PRiSM software to compute the QE is the following :

$$QE(\lambda) = \frac{\frac{Median(I\lambda(X_1, Y_1, X_2, Y_2) - Bias(X_1, Y_1, X_2, Y_2)) * CVF}{Tex}}{Photons(\lambda) * \frac{DiodeFluxMeas(\lambda)}{DiodeFluxCalibration(\lambda)} * \frac{Pix^2}{100} * Window(\lambda)} * 100$$

$$QE(\lambda) = \frac{Electrons / pixel / sec}{Photons / pixel / sec} *100$$

Name	Definition	Source	Туре
λ	Wavelength expressed in nm	FITS file header	Double
Bias	Master bias file, made from a median stack of 5 single bias frames	User input	Image
$X_{1}, X_{2}, Y_{1}, Y_{2}$	Definition of the window where the computations are done, set such as	User input	Set of Integers
	$(X_1+X_2)/2 = X \text{ CCD center and } (Y_1+Y_2)/2 = Y \text{ CCD}$		
$Bias(X_1, X_2, Y_1, Y_2)$	Bias image sub-window	Computed	Image
CVF	The conversion factor expressed in e ⁻ /ADU	User input	Double
$I\lambda (X_1, X_2, Y_1, Y_2)$	Image sub-window, for a given wavelength that serves to compute the QE	User input	Image
	at a given wavelength		
Γλ	Image for a given wavelength that serves to compute the QE at a given wavelength	User input	Image
Median(I)	Provides the Median value of an image or sub window, expressed in ADUs	Computed	Double
Tex	Exposure time in sec	User Input	Double
Photons (λ)	Amount of photons for 1 cm^2 and per second at the CCD level for a given	Calibration file	Set of Double
	wavelength		
$DiodeFluxMeas(\lambda)$	Current measured at the photodiode integrating Sphere level, in Amps for a	FITS file header	Double
· · ·			

	given wavelength		
DiodeFluxCalibration(λ)	Calibration current measured at the integrating Sphere level, in Amps for a	Calibration file	Set of Double
	given wavelength and a given amount of photons at the CCD level (see		
	photodiode calibration procedures)		
Pix	Pixel's size expressed in mm, divided by 100 mm ² , which is the diode	FITS file header	Double
	surface.		
Window(λ)	CCD Windows Transmission for a given wavelength	Calibration file	Set of Double

This is the software output for each files:

Window area is : X1= 58 X2= 1068 Y1= 25 Y2= 508

Filename QE00320-4.fits QE00340-4.fits	Wavelength 320 340	Flux 1.3918E-10 3.7269E-10	Exposure 1200 563.86	Mean 89563 1.2818E5	Stddev.Rms 955 1165.7	Median 89578 1.282E5	Mean-Median -14.386 -19.339	Min@5% 31425 45095	Max@95% 32540 46449	Enthropy 6.4 6.3
Flux Exposure	: in A : in se	CS								
Filename QE0002.fits QE0034.fits QE0004.fits QE0032.fits QE0006.fits	Wavelength 320 340 360 380 400	PRNU% 2.262 2.1125 2.0669 1.3742 0.95867	QE% 61.065 69.312 73.139 85.51 93.401	FDio/FDio. 0.83684 0.87389 0.91787 0.94499 0.98385	cal Ph/pix 207.12 501.4 1069.8 1971 3187.7	/sec e-/ 118 337 766 165 294	pix/sec .89 .1 .77 1.7 7.5			

Photodiode Calibration:

The QE measurements use calibration data which accuracy is critical to get a correct QE curve.

The 1cm² Hamamatsu SR2387-1010R absolute calibrated photodiode comes with a datasheet form the manufacturer that provides: the wavelength, the number of photons and the current expressed in Amps. The bandwidth used for measurements and calibration is so narrow (5nm) that a small change in bandwidth makes linear changes in amount of photons and current. Nevertheless, all the tests must be carried out with the same bandwidth that as been used for the photodiode calibration.

The absolute calibrated photodiode has been re-calibrated by the German "Physikalish-Technise Bundesanstalt" on April 2001. This absolute calibrated photodiode is installed at the level of the CCD surface (D1 distance) and calibrates the 1cm² photon ratio between the sphere photodiode and the CCD. As the absolute calibrated photodiode <u>cannot</u> be kept during actual CCD measurements, the photon ratio between the sphere photodiode and the CCD surface must be known very accurately and recalibrated on regular basis (6 months). This ratio is around 20-22 but varies according to the wavelength. The current of the absolute calibrated photodiode can be very low at the 300-400 nm domain: the way to overcome this problem is to raise the lamp level (150-200W) and tune perfectly the lamp with the entrance slit of the monochromator.

Setup used for sphere photodiode calibration

Setup used for QE measurements with a real CCD

The CCD window transmission shall be measured the most accurately possible, or to avoid any problems, this transmission file data can be left to 1, and during calibration of the sphere photodiode, the window that will be used for the CCD cryostat can be installed in front of the CCD calibrated diode, like shown in the previous drawings.

Ratio of light/current between the absolute calibrated photodiode and the integrating sphere photodiode (Nov 99)

QE (in mA/W) of the 1 cm² Hamamatsu SR2387-1010R

Efficiency of the overall testbench at the CCD surface, no window, for 2 power level applied to the Lamp

Errors and source of errors:

Name	Error source	Effect of error
λ	1. Error in the monochromator wavelength settings	1. The effect of the error could lead from: a non sense
	2. Monochromator has lost its wavelength calibration	QE Curve, to errors very subtle to notice depending
	3. Bandwidth too far from the one used for the	on λ

	calibration of the diode	2. Same as 1.
		3. Same as 1
Bias	1. Bias taken with a different clock mode than the image	1. Error mostly visible for low signal level of $I\lambda$, in
	data	the UV
X_1, X_2, Y_1, Y_2	1. Bad definition of the window, outside the center	1. Integrating sphere Flat field non-uniformity can
		lead to mismatches between the calibration diode
		located at the center of the field and the
		measurement.
CVF	1. Bad input or wrong computation	1. The whole QE curve is scaled accordingly
Īλ	1. Bad image : signal too low	1.Inaccuracy in QE, especially in UV
	2. Contaminated CCD	2. False QE, effect depending on λ
	3. Non linear CCD/controller	3. The effect of the error could lead from a non-sense
	4. CCD not located is at D1 from the integrating sphere	QE Curve to errors very subtle to notice depending
	vertex	on λ .
		4. The whole QE curve is scaled accordingly
Tex	1. Wrong exposure time	1. The effect of the error could lead from a non-sense
	2. Too short exposure time (less than 1s)	QE Curve, to errors very subtle to notice depending
		on λ .
		2. Shutter errors and non linearity may induce effects
		described in 1.
Photons (λ)	1. General calibration error	1. The effect of the error could lead from: a non sense
		QE Curve, to errors very subtle to notice depending
		on λ
$DiodeFluxMeas(\lambda)$	1. Current Measurement error	1. The effect of the error could lead from: a non sense
		QE Curve, to errors very subtle to notice depending
		on λ
$DiodeFluxCalibration(\lambda)$	1. Calibration Errors	1. The effect of the error could lead from: a non sense
		QE Curve, to errors very subtle to notice depending
		on λ
Pix	1. Wrong pixel size	1. The whole QE curve is scaled accordingly
Window(λ)	1. Wrong window transmission	1. The effect of the error could lead from a non sense
		QE Curve to errors very subtle to notice depending
		on λ

More analytical uncertainty computations:

Let's assume :

$$S(\lambda) = Median(I\lambda(X_1, Y_1, X_2, Y_2) - Bias(X_1, Y_1, X_2, Y_2))$$

If the CCD diode has been calibrated with the CCD window, the window transmission is embedded to $DiodeFluxCalibration(\lambda)$ data. In that case :

Window(
$$\lambda$$
) =1

Let's compute the partial derivative for each variable (errors contribution factors δ):

$$\delta DiodeFluxCalibration(\lambda) = \frac{CVF*100*S(\lambda)}{Tex*Pix^2*Photons(\lambda)*DiodeFluxMeas(\lambda)}$$

$$\delta DiodeFluxMeas(\lambda) = \frac{-100 * CVF * S(\lambda) * DiodeFluxMeas(\lambda)}{Tex * Pix^2 * Photons(\lambda) * DiodeFluxCalibration(\lambda)^2}$$

$$\delta S(\lambda) = \frac{CVF*100*DiodeFluxMeas(\lambda)}{Tex*Pix^{2}*Photons(\lambda)*DiodeFluxCalibration(\lambda)}$$

$$\delta Tex = \begin{vmatrix} -100 * CVF * S(\lambda) * DiodeFluxMeas(\lambda) \\ Tex^{2} * Pix^{2} * Photons(\lambda) * DiodeFluxCalibration(\lambda) \end{vmatrix}$$

$$\delta Photons(\lambda) = \frac{-100 * CVF * S(\lambda) * DiodeFluxMeas(\lambda)}{Tex * Pix^2 * Photons(\lambda)^2 * DiodeFluxCalibration(\lambda)}$$

$$\delta CVF = \frac{100 * S(\lambda) * DiodeFluxMeas(\lambda)}{Tex * Pix^{2} * Photons(\lambda) * DiodeFluxCalibration(\lambda)}$$

$$\delta Pix = \frac{-200 * CVF * S(\lambda) * DiodeFluxMeas(\lambda)}{Tex * Pix^{3} * Photons(\lambda) * DiodeFluxCalibration(\lambda)}$$

If all the measurements errors from the parameters are expressed as Δ , The ΔQE error yields to :

 $\Delta QE(\lambda) = (\delta Tex * \Delta Tex + \delta S(\lambda) * \Delta S(\lambda) + \delta Photons(\lambda) * \Delta Photons(\lambda) + \delta DiodeFluxMeas(\lambda) * \Delta DiodeFluxMeas(\lambda) + \delta DiodeFluxCalibration(\lambda) * \Delta DiodeFluxCalibration(\lambda) + \delta Pix * \Delta Pix + \delta CVF * \Delta CVF) * 100$

The dominant parameters are, the other are negligible:

- $\Delta Photons(\lambda)$
- Δ DiodeFluxCalibration (λ)