Kids

Press Release

Looking Deep into a Huge Storm on Saturn

19 May 2011

ESO’s Very Large Telescope (VLT) has teamed up with NASA’s Cassini spacecraft to study a rare storm in the atmosphere of the planet Saturn in more detail than has ever been possible before. The new study by an international team will appear this week in the journal Science.

The atmosphere of the planet Saturn normally appears placid and calm. But about once per Saturn year (about thirty Earth years), as spring comes to the northern hemisphere of the giant planet, something stirs deep below the clouds that leads to a dramatic planet-wide disturbance (eso9014).

The latest such storm was first detected by the radio and plasma wave science instrument on NASA’s Cassini spacecraft [1], in orbit around the planet, and also tracked by amateur astronomers in December 2010. It has now been studied in detail using the VISIR [2] infrared camera on ESO’s Very Large Telescope (VLT) in conjunction with observations from the CIRS instrument [3] on Cassini.

This is only the sixth of these huge storms to be spotted since 1876. It is the first ever to be studied in the thermal infrared — to see the variations of temperature within a Saturnian storm — and the first ever to be observed by an orbiting spacecraft.

“This disturbance in the northern hemisphere of Saturn has created a gigantic, violent and complex eruption of bright cloud material, which has spread to encircle the entire planet,” explains Leigh Fletcher (University of Oxford, UK), lead author of the new study. “Having both the VLT and Cassini investigating this storm at the same time gives us a great chance to put the Cassini observations into context. Previous studies of these storms have only been able to use reflected sunlight, but now, by observing thermal infrared light for the first time, we can reveal hidden regions of the atmosphere and measure the really substantial changes in temperatures and winds associated with this event.”

The storm may have originated deep down in the water clouds where a phenomenon similar to a thunderstorm drove the creation of a giant convective plume: just as hot air rises in a heated room, this mass of gas headed upwards and punched through Saturn’s usually serene upper atmosphere. These huge disturbances interact with the circulating winds moving east and west and cause dramatic temperature changes high up in the atmosphere.

“Our new observations show that the storm had a major effect on the atmosphere, transporting energy and material over great distances, modifying the atmospheric winds — creating meandering jet streams and forming giant vortices — and disrupting Saturn’s slow seasonal evolution,” adds Glenn Orton (Jet Propulsion Laboratory, Pasadena, USA), another member of the team.

Some of the unexpected features seen in the new imaging from VISIR have been named stratospheric beacons. These are very strong temperature changes high in the Saturnian stratosphere, 250-300 km above the cloud tops of the lower atmosphere, that show how far up into the atmosphere the effects of the storm extend. The temperature in Saturn’s stratosphere is normally around -130 degrees Celsius at this season but the beacons are measured to be 15-20 degrees Celsius warmer.

The beacons are completely invisible in reflected sunlight but can outshine the emission from the rest of the planet in the thermal infrared light detected by VISIR. They had never been detected before, so astronomers are not sure if they are common features in such storms.

“We were lucky to have an observing run scheduled for early in 2011, which ESO allowed us to bring forward so that we could observe the storm as soon as possible. It was another stroke of luck that Cassini’s CIRS instrument could also observe the storm at the same time, so we had imaging from VLT and spectroscopy of Cassini to compare,” concludes Leigh Fletcher. “We are continuing to observe this once-in-a-generation event.”

Notes

[1] The Cassini–Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, Pasadena, California, a division of the California Institute of Technology, manages the mission for NASA's Science Mission Directorate, Washington, DC.

[2] VISIR is the VLT spectrometer and imager for the mid-infrared. VISIR was built by CEA/DAPNIA/SAP and NFRA/ASTRON.

[3] CIRS stands for Composite Infrared Spectrometer, one of the instruments on Cassini. CIRS analyses heat radiation and is capable of discerning an object's composition.

More information

This research was presented in a paper to appear in the journal Science on 19 May 2011.

To obtain a copy of the Science paper please contact the Science Press Package office at either scipak@aaas.org (email), or +1 202 326 6440 (phone).

The team is composed of Leigh N. Fletcher (University of Oxford, UK), Brigette E. Hesman (University of Maryland, USA), Patrick G.J. Irwin (University of Oxford), Kevin H. Baines (University of Wisconsin-Madison, USA), Thomas W. Momary (Jet Propulsion Laboratory (JPL), Pasadena, USA), A. Sanchez-Lavega (Universidad del País Vasco, Bilbao, Spain), F. Michael Flasar (NASA Goddard Space Flight Center (GSFC), Maryland, USA), P.L. Read (University of Oxford, UK), Glenn S. Orton (JPL), Amy Simon-Miller (GSFC), Ricardo Hueso (Universidad del País Vasco), Gordon L. Bjoraker (GSFC), A. Mamoutkine (GSFC, Teresa del Rio-Gaztelurrutia (Universidad del País Vasco), Jose M. Gomez (Fundacion Esteve Duran, Barcelona, Spain), Bonnie Buratti (JPL), Roger N. Clark (US Geological Survey, Denver, USA), Philip D. Nicholson (Cornell University, Ithaca, USA), Christophe Sotin (JPL).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and VISTA, the world’s largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”

Links

Contacts

Dr Leigh N. Fletcher
Glasstone Science Fellow, University of Oxford
UK
Tel: +44 1 865 272 089
Email: fletcher@atm.ox.ac.uk

Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Email: rhook@eso.org

Jia-Rui C. Cook
Media Relations Specialist, NASA's Jet Propulsion Laboratory
Pasadena, USA
Tel: +1 818 354 0850
Cell: +1 818 359 3241
Email: Jia-Rui.C.Cook@jpl.nasa.gov

Nancy Neal-Jones
Science Writer, NASA's Goddard Space Flight Center
USA
Tel: +1 301 286 0039
Email: Nancy.n.jones@nasa.gov

Elizabeth Zubritsky
Science Writer, NASA's Goddard Space Flight Center
USA
Tel: +1 301-614-5438
Email: elizabeth.a.zubritsky@nasa.gov

Pete Wilton
Acting Deputy Head of Press & Information Office, University of Oxford
UK
Tel: +44 1865 283 877
Email: pete.wilton@admin.ox.ac.uk

Connect with ESO on social media

About the Release

Release No.:eso1116
Name:Saturn
Type:Solar System : Planet : Type : Gas Giant
Solar System : Planet : Feature : Atmosphere : Storm
Facility:Very Large Telescope
Instruments:VISIR
Science data:2011Sci...332.1413F

Images

Huge storm on Saturn observed by ESO's Very Large Telescope
Huge storm on Saturn observed by ESO's Very Large Telescope